Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (10): 392-400. doi: 10.19678/j.issn.1000-3428.0069490

• Development Research and Engineering Application • Previous Articles    

Ultra-short-term and Short-term Power Load Single-step and Multi-step Prediction Considering Spatial Association

GENG Zhenwei1, LI Shenzhang1, YU Fengrong2,*()   

  1. 1. Information Center of Yunnan Power Grid Co., Ltd., Kunming 650217, Yunnan, China
    2. School of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • Received:2024-03-03 Revised:2024-04-21 Online:2025-10-15 Published:2024-07-11
  • Contact: YU Fengrong

考虑空间关联的超短期、短期多区域电力负荷单步和多步预测

耿贞伟1, 李申章1, 于凤荣2,*()   

  1. 1. 云南电网有限责任公司信息中心,云南 昆明 650217
    2. 昆明理工大学冶金与能源工程学院,云南 昆明 650093
  • 通讯作者: 于凤荣
  • 基金资助:
    国家自然科学基金(51869007); 云南省揭榜挂帅科技项目(202204BW050001)

Abstract:

Accurate ultra-short-term and short-term multi-region power load forecasting is the key to achieving rapid response and real-time scheduling in power systems. Therefore, based on the spatiotemporal correlation of loads in different regions of a power grid, this study proposes a single-step and multi-step prediction model for ultrashort-term and short-term power load forecasting in multiple regions. This model integrates a Gate-controlled Multi-head Temporal Convolutional Network (GMTCN), a Bi-directional Long Short-Term Memory (BiLSTM), and an attention mechanism, denoted as GMTCN-BiLSTM-Attention. First, the Spearman correlation coefficient is used to analyze the spatial correlation of power loads in different regions, and the load sequences of 15 regions are combined into a multivariate time series to be used as input. Then, GMTCN and BiLSTM are employed to obtain the temporal features and spatiotemporal dependencies of different load sequences, and the attention mechanism is applied to assign higher weights to important features, ignoring unimportant information to improve the robustness of the model. Experiments on two datasets reveal a spatiotemporal correlation between the power loads in different regions. The proposed model can effectively obtain the temporal characteristics of load sequences and the spatiotemporal dependencies among load sequences, and it can simultaneously achieve single- and multi-step predictions of ultra-short-term and short-term power loads in multiple regions. Compared with other deep learning models, it has better predictive performance, stronger robustness, and improved generalization.

Key words: multi-region power load forecasting, deep learning, Gate-controlled Multi-head Temporal Convolutional Network (GMTCN), Bi-directional Long Short Term Memory (BiLSTM) network, attention mechanism

摘要:

准确的超短期、短期多区域电力负荷预测是实现电力系统快速响应和实时调度的关键。基于电网不同区域负荷的时空相关性,提出考虑空间关联的多区域电力负荷超短期、短期的单步和多步预测模型。该模型集成门控多头时间卷积网络(GMTCN)、双向长短期记忆(BiLSTM)网络和注意力机制(Attention),记为GMTCN-BiLSTM-Attention。首先,采用Spearman相关系数分析不同区域电力负荷空间关联,将15个区域的负荷序列组成多元时间序列作为输入。然后,采用GMTCN和BiLSTM获取不同负荷序列的时序特征和时空依赖,并通过Attention机制赋予重要特征更高的权重,忽略不重要的信息,以提高模型的鲁棒性。在2个数据集上的实验结果表明,不同区域变压器的负荷之间存在时空相关性,提出的模型能够有效获取负荷序列以及负荷序列之间的时空依赖,同时实现对多区域的超短期和短期负荷进行单步和多步预测。与其他深度学习模型相比,具有更优的预测性能、更强的鲁棒性和泛化性。

关键词: 多区域电力负荷预测, 深度学习, 门控多头时间卷积网络, 双向长短期记忆网络, 注意力机制