| 1 |
李练兵, 高国强, 陈伟光, 等. 考虑特征重组和BiGRU-Attention-XGBoost模型的超短期负荷功率预测. 现代电力, 2025, 42(3): 571- 581.
|
|
LI L B, GAO G Q, CHEN W G, et al. Ultra short term load power prediction considering feature recombination and BiGRU-Attention-XGBoost model. Modern Electric Power, 2025, 42(3): 571- 581.
|
| 2 |
陈宋宋, 王阳, 周颖, 等. 基于客户用电数据的多时空维度负荷预测综述. 电网与清洁能源, 2023, 39(12): 28- 40.
|
|
CHEN S S, WANG Y, ZHOU Y, et al. Review of multi-temporal and multi-dimensional load forecasting based on customer electricity consumption data. Power System and Clean Energy, 2023, 39(12): 28- 40.
|
| 3 |
WANG Z Y, ZHOU X J, TIAN J T, et al. Hierarchical parameter optimization based support vector regression for power load forecasting. Sustainable Cities and Society, 2021, 71, 102937.
doi: 10.1016/j.scs.2021.102937
|
| 4 |
康重庆, 夏清, 张伯明. 电力系统负荷预测研究综述与发展方向的探讨. 电力系统自动化, 2004(17): 1- 11.
|
|
KANG C Q, XIA Q, ZHANG B M. Review of power system load forecasting research and discussion of development direction. Automation of Electric Power Systems, 2004(17): 1- 11.
|
| 5 |
NIE Y, JIANG P, ZHANG H P. A novel hybrid model based on combined preprocessing method and advanced optimization algorithm for power load forecasting. Applied Soft Computing, 2020, 97, 106809.
doi: 10.1016/j.asoc.2020.106809
|
| 6 |
HUANG Q, LI J H, ZHU M S. An improved convolutional neural network with load range discretization for probabilistic load forecasting. Energy, 2020, 203, 117902.
doi: 10.1016/j.energy.2020.117902
|
| 7 |
丁国辉, 刘宇琪, 王言开, 等. 基于翻转网络的低相关性序列数据预测研究. 计算机工程, 2024, 50(2): 78- 90.
doi: 10.19678/j.issn.1000-3428.0067027
|
|
DING G H, LIU Y Q, WANG T K, et al. Research on low-correlation sequence data prediction based on flip network. Computer Engineering, 2024, 50(2): 78- 90.
doi: 10.19678/j.issn.1000-3428.0067027
|
| 8 |
李丹, 张远航, 杨保华, 等. 基于约束并行LSTM分位数回归的短期电力负荷概率预测方法. 电网技术, 2021, 45(4): 1356- 1364.
|
|
LI D, ZHANG Y H, YANG B H, et al. Short time power load probabilistic forecasting based on constrained parallel-LSTM neural network quantile regression mode. Power System Technology, 2021, 45(4): 1356- 1364.
|
| 9 |
赵洋, 王瀚墨, 康丽, 等. 基于时间卷积网络的短期电力负荷预测. 电工技术学报, 2022, 37(5): 1242- 1251.
|
|
ZHAO Y, WANG H M, KANG L, et al. Temporal convolution network-based short-term electrical load forecasting. Transactions of China Electrotechnical Society, 2022, 37(5): 1242- 1251.
|
| 10 |
马越, 温蜜. 基于多尺度LDTW和TCN的空间负荷预测方法. 计算机工程, 2024, 50(3): 106- 113.
doi: 10.19678/j.issn.1000-3428.0066944
|
|
MA Y, WEN M. Spatial load forecasting method based on multiscale LDTW and TCN. Computer Engineering, 2024, 50(3): 106- 113.
doi: 10.19678/j.issn.1000-3428.0066944
|
| 11 |
邵必林, 纪丹阳. 基于VMD-SE的电力负荷分量的多特征短期预测. 中国电力, 2024, 57(4): 162- 170.
|
|
SHAO B L, JI D Y. Multi-feature short-term forecasting of power load components based on VMD-SE. Electric Power, 2024, 57(4): 162- 170.
|
| 12 |
李晓, 卢先领. 基于双重注意力机制和GRU网络的短期负荷预测模型. 计算机工程, 2022, 48(2): 291-296, 305.
doi: 10.19678/j.issn.1000-3428.0060145
|
|
LI X, LU X L. Method for forecasting short-term power load based on dual-stage attention mechanism and gated recurrent unit network. Computer Engineering, 2022, 48(2): 291-296, 305.
doi: 10.19678/j.issn.1000-3428.0060145
|
| 13 |
欧阳福莲, 王俊, 周杭霞. 基于改进迁移学习和多尺度CNN-BiLSTM-Attention的短期电力负荷预测方法. 电力系统保护与控制, 2023, 51(2): 132- 140.
|
|
OUYANG F L, WANG J, ZHOU H X. A short-term power load forecasting method based on improved transfer learning and multi-scale CNN-BiLSTM-Attention. Power System Protection and Control, 2023, 51(2): 132- 140.
|
| 14 |
唐贤伦, 陈洪旭, 熊德意, 等. 基于极端梯度提升和时间卷积网络的短期电力负荷预测. 高电压技术, 2022, 48(8): 3059- 3067.
|
|
TANG X H, CHEN H X, XIONG D Y, et al. Short-term power load forecasting based on extreme gradient boosting and time convolution network. High Voltage Engineering, 2022, 48(8): 3059- 3067.
|
| 15 |
郑豪丰, 杨国华, 康文军, 等. 基于多负荷特征和TCN-GRU神经网络的负荷预测. 中国电力, 2022, 55(11): 142- 148.
|
|
ZHENG H F, YANG G H, KANG W J, et al. Load forecasting based on multi-load characteristics and TCN-GRU neural network. Electric Power, 2022, 55(11): 142- 148.
|
| 16 |
LIANG J K, TANG W Y. Ultra-short-term spatiotemporal forecasting of renewable resources: an attention temporal convolutional network-based approach. IEEE Transactions on Smart Grid, 2022, 13(5): 3798- 3812.
doi: 10.1109/TSG.2022.3175451
|
| 17 |
张鹏飞, 胡博, 何金松, 等. 基于时空图卷积网络的短期空间负荷预测方法. 电力系统自动化, 2023, 47(13): 78- 85.
|
|
ZHANG P F, HU B, HE J S, et al. Short-term spatial load forecasting method based on spatio-temporal graph convolutional network. Automation of Electric Power Systems, 2023, 47(13): 78- 85.
|
| 18 |
吴军英, 路欣, 刘宏, 等. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测. 中国电力, 2024, 57(6): 131- 140.
|
|
WU J Y, LU X, LIU H, et al. Ultra-short term multi-region power load forecasting based on Spearman-GCN-GRU model. Electric Power, 2024, 57(6): 131- 140.
|
| 19 |
焦润海, 褚佳杰, 李俊良, 等. 基于数据分解的多区域个性化联邦负荷预测方法. 中国电机工程学报, 2025, 45(5): 1691- 1703.
|
|
JIAO R H, CHU J J, LI J L, et al. Multi-region personalized federal load forecasting method based on data decomposition. Proceedings of the CSEE, 2025, 45(5): 1691- 1703.
|
| 20 |
LIU M P, QIN H, CAO R, et al. Short-term load forecasting based on improved TCN and DenseNet. IEEE Access, 2022, 10, 115945- 115957.
doi: 10.1109/ACCESS.2022.3218374
|
| 21 |
杨国华, 郑豪丰, 张鸿皓, 等. 基于Holt-Winters指数平滑和时间卷积网络的短期负荷预测. 电力系统自动化, 2022, 46(6): 73- 82.
|
|
YANG G H, ZHENG H F, ZHANG H H, et al. Short-term load forecasting based on Holt-Winters exponential smoothing and temporal convolutional network. Automation of Electric Power Systems, 2022, 46(6): 73- 82.
|
| 22 |
WANG Y Y, CHEN J, CHEN X Q, et al. Short-term load forecasting for industrial customers based on TCN-LightGBM. IEEE Transactions on Power Systems, 2021, 36(3): 1984- 1997.
doi: 10.1109/TPWRS.2020.3028133
|
| 23 |
SONG C R, YANG H D, MENG X B, et al. A novel deep-learning framework for short-term prediction of cooling load in public buildings. Journal of Cleaner Production, 2024, 434, 139796.
doi: 10.1016/j.jclepro.2023.139796
|
| 24 |
朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-BiLSTM的短期电力负荷预测. 电网技术, 2021, 45(11): 4532- 4539.
|
|
ZHU L J, XUN Z H, WANG Y X, et al. Short-term power load forecasting based on CNN-BiLSTM. Power System Technology, 2021, 45(11): 4532- 4539.
|
| 25 |
龚飘怡, 罗云峰, 方哲梅, 等. 基于Attention-BiLSTM-LSTM神经网络的短期电力负荷预测方法. 计算机应用, 2021, 41(S1): 81- 86.
|
|
GONG P Y, LUO Y F, FANG Z M, et al. Short-term power load forecasting method based on Attention-BiLSTM-LSTM neural network. Journal of Computer Applications, 2021, 41(S1): 81- 86.
|