Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (10): 213-224. doi: 10.19678/j.issn.1000-3428.0069514

• Cyberspace Security • Previous Articles     Next Articles

Research on Multi-Technology Integrated Anti-Mechanical Attack Scheme Based on Vibration Sensors

HUANG Daoqi1, ZHANG Huajun1,*(), SUN Ning2, ZHUANG Lihua1, XU Shoukun1   

  1. 1. School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, Jiangsu, China
    2. FreqX Intelligence Technology Jiangsu Co., Ltd., Changzhou 213164, Jiangsu, China
  • Received:2024-03-07 Revised:2024-06-05 Online:2025-10-15 Published:2024-07-10
  • Contact: ZHANG Huajun

基于振动传感器的多技术集成抗机械攻击方案研究

黄道旗1, 张华君1,*(), 孙宁2, 庄丽华1, 徐守坤1   

  1. 1. 常州大学计算机与人工智能学院, 江苏 常州 213164
    2. 频率探索智能科技江苏有限公司, 江苏 常州 213164
  • 通讯作者: 张华君
  • 基金资助:
    江苏省研究生科研与实践创新计划项目(KYCX23_3062); 江苏省石油化工过程关键设备数字孪生技术工程研究中心(苏发改高技发〔2019〕1125号); 常州市重点研发项目(CE20230037)

Abstract:

In predictive maintenance systems, the vibration sensors used during the data collection phase may be subjected to human or environmental interference, leading to data anomalies. A secure and reliable integrated pre-detection scheme is proposed to ensure the reliability of the collected data. This scheme combines random open strategies, similarity detection methods, and sound source localization technologies to enhance the accuracy and reliability of the system in terms of both spatial and temporal dimensions. First, a random open strategy is used to ensure that the sensors are not subjected to directional interference, thereby enhancing the safety redundancy of the system. Second, a similarity detection method utilizes multi-dimensional distances to calculate the similarity of consecutive acceleration data collected by vibration sensors and compares it with a threshold to increase the sensitivity of the system to equipment status. Finally, a sound source localization technology analyzes the audio corresponding to abnormal similarities to determine the source location, further enhancing the precision of pre-detection. Experimental results in targeted testing environments indicate that in non-adversarial scenarios, the non-integrated scheme improves the accuracy and precision by 4 and 4.13 percentage points, respectively, compared to the integrated scheme and the recall remains the same. Conversely, in adversarial scenarios, the integrated scheme improves the accuracy and recall by 9.5 and 9.14 percentage points, respectively, compared to the non-integrated scheme, with the precision remaining constant.

Key words: hardware security, predictive maintenance, industrial Internet of things, adversarial scenarios, random interference

摘要:

在预测性维护系统中,振动传感器在数据采集阶段可能会受到人为或自然环境的干扰,导致数据异常。为了确保采集数据的可靠性,提出一种安全可靠的集成式预检测方案。该方案结合了随机开启策略、相似性检测和声源定位这三种技术,从空间和时间两个维度提升系统的准确性与可靠性。首先,通过随机开启策略确保传感器不会受到定向干扰,增强系统的安全冗余;其次,相似性检测方法采用多维度距离来计算振动传感器连续采集加速度数据的相似度,并与阈值比较以提高系统对设备状态的敏感度;最后,通过声源定位技术分析异常相似度对应的音频来判断声源位置,进一步提高了预检测的精确度。在对抗和非对抗场景下的实验结果表明,在非对抗场景下,未集成方案相对于集成方案的准确率和精确度分别提升了4和4.13百分点,但召回率保持不变,在对抗场景下,集成方案相对于未集成方案的准确率和召回率分别提升了9.5和9.14百分点,但精确度保持不变。

关键词: 硬件安全, 预测性维护, 工业物联网, 对抗场景, 随机干扰