| 1 |
LIANG J, CAO J, FAN Y, et al. VRT: a video restoration transformer. IEEE Transactions on Image Processing, 2024, 33, 2171- 2182.
doi: 10.1109/TIP.2024.3372454
|
| 2 |
SONG M, SONG W, YANG G, et al. Improving RGB-D salient object detection via modality-aware decoder. IEEE Transactions on Image Processing, 2022, 31, 6124- 6138.
doi: 10.1109/TIP.2022.3205747
|
| 3 |
ZHANG W, JIANG Y, FU K, et al. BTS-Net: bi-directional transfer-and-selection network for RGB-D salient object detection[C]//Proceedings of 2021 IEEE International Conference on Multimedia and Expo. Washington D. C., USA: IEEE Press, 2021: 1-6.
|
| 4 |
ZHAO X, PANG Y, ZHANG L, et al. Self-supervised pretraining for RGB-D salient object detection[EB/OL]. (2021-01-29)[2024-02-25]. https://arxiv.org/abs/2101.12482.
|
| 5 |
ZHOU T, FU H, CHEN G, et al. Specificity-preserving RGB-D saliency detection[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 4681-4691.
|
| 6 |
WU Y H, LIU Y, XU J, et al. MobileSal: extremely efficient RGB-D salient object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 10261- 10269.
doi: 10.1109/TPAMI.2021.3134684
|
| 7 |
PIAO Y, RONG Z, ZHANG M, et al. A2dele: adaptive and attentive depth distiller for efficient RGB-D salient object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 9060-9069.
|
| 8 |
ZHANG J, LIANG Q, SHI Y. KD-SCFNet: towards more accurate and efficient salient object detection via knowledge distillation[EB/OL]. (2022-09-21)[2024-02-25]. https://arxiv.org/abs/2208.02178.
|
| 9 |
ZHOU H, QIAO B, YANG L, et al. Texture-guided saliency distilling for unsupervised salient object detection[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7257-7267.
|
| 10 |
李沼洁, 朱恒亮, 毛国君, 等. 渐进式特征增强的弱监督显著性目标检测. 计算机工程, 2024, 50(12): 233- 244.
doi: 10.19678/j.issn.1000-3428.0068406
|
|
LI Z J, ZHU H L, MAO G J, et al. Progressively feature-enhanced weakly supervised for salient object detection. Computer Engineering, 2024, 50(12): 233- 244.
doi: 10.19678/j.issn.1000-3428.0068406
|
| 11 |
李军侠, 王星驰, 殷梓, 等. 边缘深度挖掘的弱监督显著性目标检测. 计算机工程, 2023, 49(7): 169- 178.
doi: 10.19678/j.issn.1000-3428.0065413
|
|
LI J X, WANG X C, YIN Z, et al. Weakly supervised salient object detection via edge depth mining. Computer Engineering, 2023, 49(7): 169- 178.
doi: 10.19678/j.issn.1000-3428.0065413
|
| 12 |
CHEN C, WANG G, PENG C, et al. Improved robust video saliency detection based on long-term spatial-temporal information. IEEE Transactions on Image Processing, 2019, 29, 1090- 1100.
|
| 13 |
SONG H, LIU Z, DU H, et al. Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning. IEEE Transactions on Image Processing, 2017, 26(9): 4204- 4216.
doi: 10.1109/TIP.2017.2711277
|
| 14 |
GUO J, REN T, BEI J. Salient object detection for RGB-D image via saliency evolution[C]//Proceedings of 2016 IEEE International Conference on Multimedia and Expo (ICME). Washington D. C., USA: IEEE Press, 2016: 1-6.
|
| 15 |
XU Y, YU X, ZHANG J, et al. Weakly supervised RGB-D salient object detection with prediction consistency training and active scribble boosting. IEEE Transactions on Image Processing, 2022, 31, 2148- 2161.
doi: 10.1109/TIP.2022.3151999
|
| 16 |
孙福明, 胡锡航, 武景宇, 等. 跨模态交互融合与全局感知的RGB-D显著性目标检测. 软件学报, 2024, 35(4): 1899- 1913.
|
|
SUN F M, HU X H, WU J Y, et al. RGB-D salient object detection based on cross-modal interactive fusion and global awareness. Journal of Software, 2024, 35(4): 1899- 1913.
|
| 17 |
DONG S, HONG X, TAO X, et al. Few-shot class-incremental learning via relation knowledge distillation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021, 35(2): 1255-1263.
|
| 18 |
LIN S, JI R, CHEN C, et al. Holistic CNN compression via low-rank decomposition with knowledge transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(12): 2889- 2905.
|
| 19 |
LIU B, RAO Y, LU J, et al. MetaDistiller: network self-boosting via meta-learned top-down distillation[EB/OL]. (2019-01-22)[2024-02-25]. https://arxiv.org/abs/1807.03748.
|
| 20 |
|
| 21 |
HE K, FAN H, WU Y, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 9729-9738.
|
| 22 |
|
| 23 |
|
| 24 |
WU H, QU Y, LIN S, et al. Contrastive learning for compact single image dehazing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 10551-10560.
|
| 25 |
HUANG R, ZHAO Q, XING Y, et al. A saliency enhanced feature fusion based multiscale RGB-D salient object detection network[C]//Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D. C., USA: IEEE Press, 2024: 9356-9360.
|
| 26 |
JU R, GE L, GENG W, et al. Depth saliency based on anisotropic center-surround difference[C]//Proceedings of 2014 IEEE International Cconference on Image Processing (ICIP). Washington D. C., USA: IEEE Press, 2014: 1115-1119.
|
| 27 |
PENG H, LI B, XIONG W, et al. RGBD salient object detection: a benchmark and algorithms[C]//Proceedings of Computer Vision-ECCV 2014, Berlin, Germany: Springer, 2014: 92-109.
|
| 28 |
LI N, YE J, JI Y, et al. Saliency detection on light field. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 39(8): 1605- 1616.
|
| 29 |
ZHANG J, FAN D P, DAI Y, et al. RGB-D saliency detection via cascaded mutual information minimization[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 4338-4347.
|
| 30 |
LIU N, ZHANG N, SHAO L, et al. Learning selective mutual attention and contrast for RGB-D saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(12): 9026- 9042.
|
| 31 |
|
| 32 |
MARGOLIN R, ZELNIK-MANOR L, TAL A. How to evaluate foreground maps?[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 248-255.
|
| 33 |
FAN D P, LIN Z, ZHANG Z, et al. Rethinking RGB-D salient object detection: models, data sets, and large-scale benchmarks. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(5): 2075- 2089.
|
| 34 |
CONG R, LIN Q, ZHANG C, et al. CIR-Net: cross-modality interaction and refinement for RGB-D salient object detection. IEEE Transactions on Image Processing, 2022, 31, 6800- 6815.
doi: 10.1109/TIP.2022.3216198
|
| 35 |
WU Z, ALLIBERT G, MERIAUDEAU F, et al. HiDAnet: RGB-D salient object detection via hierarchical depth awareness[EB/OL]. (2023-01-18)[2024-02-25]. https://arxiv.org/abs/2301.07405.
|
| 36 |
|
| 37 |
CHEN J, KAO S, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[EB/OL]. (2023-05-21)[2024-02-25]. https://arxiv.org/abs/2303.03667.
|