1 |
周泽岩. 论网络空间安全与治理. 信息网络安全, 2020,(S1): 153- 155.
|
|
ZHOU Z Y. On Cyberspace security and governance. Information Network Security, 2020,(S1): 153- 155.
|
2 |
孙珵珵. 网络安全治理对策研究. 信息网络安全, 2023, 23(6): 104- 110.
|
|
SUN C C. Research on countermeasures for network security governance. Netinfo Security, 2023, 23(6): 104- 110.
|
3 |
CHEN C, YE L, YU X Z, et al. A survey of network security situational awareness technology. Berlin, Germany: Springer International Publishing, 2019.
|
4 |
胡庆爽, 李成海, 路艳丽, 等. 基于分级优化置信规则库的网络安全态势预测方法. 计算机工程, 2020, 46(12): 127- 133.
doi: 10.19678/j.issn.1000-3428.0059022
|
|
HU Q S, LI C H, LU Y L, et al. Network security situation prediction method based on hierarchical optimization of belief rule base. Computer Engineering, 2020, 46(12): 127- 133.
doi: 10.19678/j.issn.1000-3428.0059022
|
5 |
李欣, 段詠程. 基于改进隐马尔可夫模型的网络安全态势评估方法. 计算机科学, 2020, 47(7): 287- 291.
|
|
LI X, DUAN Y C. Network security situation assessment method based on improved hidden Markov model. Computer Science, 2020, 47(7): 287- 291.
|
6 |
丁华东, 许华虎, 段然, 等. 基于贝叶斯方法的网络安全态势感知模型. 计算机工程, 2020, 46(6): 130- 135.
doi: 10.19678/j.issn.1000-3428.0055219
|
|
DING H D, XU H H, DUAN R, et al. Network security situation awareness model based on Bayesian method. Computer Engineering, 2020, 46(6): 130- 135.
doi: 10.19678/j.issn.1000-3428.0055219
|
7 |
ZHANG H B, YIN Y, ZHAO D M, et al. Network security situational awareness model based on threat intelligence[C]//Proceedings of International Conference on Mobile Multimedia Communications. Berlin, Germany: Springer, 2021: 526-536.
|
8 |
王金恒, 单志龙, 谭汉松, 等. 基于遗传优化PNN神经网络的网络安全态势评估. 计算机科学, 2021, 48(6): 338- 342.
|
|
WANG J H, SHAN Z L, TAN H S, et al. Network security situation assessment based on genetic optimized PNN neural network. Computer Science, 2021, 48(6): 338- 342.
|
9 |
CHEN Z H. Research on Internet security situation awareness prediction technology based on improved RBF neural network algorithm. Journal of Computational and Cognitive Engineering, 2022, 1(3): 103- 108.
doi: 10.47852/bonviewJCCE149145205514
|
10 |
杨宏宇, 曾仁韵. 一种深度学习的网络安全态势评估方法. 西安电子科技大学学报, 2021, 48(1): 183- 190.
|
|
YANG H Y, ZENG R Y. A deep learning-based network security situation assessment method. Journal of Xidian University, 2021, 48(1): 183- 190.
|
11 |
陈解元. 基于LSTM的卷积神经网络异常流量检测方法. 信息技术与网络安全, 2021, 40(7): 42- 46.
|
|
CHEN J Y. Network intrusion detection based on convolutional neural networks with LSTM. Information Technology and Network Security, 2021, 40(7): 42- 46.
|
12 |
杨宏宇, 张梓锌, 张良. 基于并行特征提取和改进BiGRU的网络安全态势评估. 清华大学学报(自然科学版), 2022, 62(5): 842- 848.
|
|
YANG H Y, ZHANG Z X, ZHANG L. Network security situation assessments with parallel feature extraction and an improved BiGRU. Journal of Tsinghua University (Science and Technology), 2022, 62(5): 842- 848.
|
13 |
WANG J, JIANG X L, ZHU J. Security situation awareness algorithm of network information transmission based on intelligent computing[C]//Proceedings of the 2nd International Conference on Electronic Information Engineering and Computer Communication (EIECC 2022). Xi'an, China: SPIE, 2023: 564-570.
|
14 |
SOKOL P, STA AŇG A R, GAJDOŠ A, et al. Network security situation awareness forecasting based on statistical approach and neural networks. Logic Journal of the IGPL, 2023, 31(2): 352- 374.
|
15 |
LU Y, KUANG Y X, YANG Q F. Intelligent prediction of network security situations based on deep reinforcement learning algorithm. Scalable Computing: Practice and Experience, 2024, 25(1): 147- 155.
|
16 |
杨志鹏, 刘代东, 袁军翼, 等. 基于自注意力机制的网络局域安全态势融合方法研究. 信息网络安全, 2024, 24(3): 398- 410.
|
|
YANG Z P, LIU D D, YUAN J Y, et al. Research on network local security situation fusion method based on self-attention mechanism. Netinfo Security, 2024, 24(3): 398- 410.
|
17 |
SHIN H C, ORTON M R, COLLINS D J, et al. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1930- 1943.
|
18 |
CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. [2024-03-17]. https://arxiv.org/abs/1406.1078.
|
19 |
|
20 |
HU W, LI J, JIANG X. A hierarchical algorithm for cyberspace situational awareness based on analytic hierarchy process. High Technology Letters, 2007, 13(3): 291- 296.
|
21 |
刘效武, 王慧强, 吕宏武, 等. 网络安全态势认知融合感控模型. 软件学报, 2016, 27(8): 2099- 2114.
|
|
LIU X W, WANG H Q, LÜ H W, et al. Fusion-based cognitive awareness-control model for network security situation. Journal of Software, 2016, 27(8): 2099- 2114.
|
22 |
|
23 |
国务院. 国家突发公共事件总体应急预案. 北京: 中国法制出版社, 2006.
|
|
The State Council. National emergency response plan for public emergencies. Beijing: China Legal Publishing House, 2006.
|
24 |
FERRAG M A, MAGLARAS L, MOSCHOYIANNIS S, et al. Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study. Journal of Information Security and Applications, 2020, 50, 102419.
|
25 |
ROSAY A, CHEVAL E, CARLIER F, et al. Network intrusion detection: a comprehensive analysis of CIC-IDS2017[C]//Proceedings of the 8th International Conference on Information Systems Security and Privacy. [S. l. ]: Science and Technology Publications, 2022: 25-36.
|
26 |
JAVAID A, NIYAZ Q, SUN W Q, et al. A deep learning approach for network intrusion detection system[C]//Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS). New York, USA: ACM Press, 2016: 21-26.
|