| 1 |
中华人民共和国国家统计局. 中国统计年鉴2002. 北京: 中国统计出版社, 2002.
|
|
National Bureau of Statistics of the People's Republic of China . Statistical yearbook of China 2002. Beijing: China Statistics Press, 2002.
|
| 2 |
LI Y Y , YAMAMOTO T , ZHANG G N . The effect of fatigue driving on injury severity considering the endogeneity. Journal of Safety Research, 2018, 64, 11- 19.
doi: 10.1016/j.jsr.2017.12.007
|
| 3 |
YAN M W , CHEN W T , WANG J H , et al. Characteristics and causes of particularly major road traffic accidents involving commercial vehicles in China. International Journal of Environmental Research and Public Health, 2021, 18 (8): 3878.
doi: 10.3390/ijerph18083878
|
| 4 |
ALHARBEY R , DESSOUKY M M , SEDIK A , et al. Fatigue state detection for tired persons in presence of driving periods. IEEE Access, 2022, 10, 79403- 79418.
doi: 10.1109/ACCESS.2022.3185251
|
| 5 |
DIMITRAKOPOULOS G N , KAKKOS I , DAI Z X , et al. Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26 (4): 740- 749.
doi: 10.1109/TNSRE.2018.2791936
|
| 6 |
QI P , RU H , GAO L Y , et al. Neural mechanisms of mental fatigue revisited: new insights from the brain connectome. Engineering, 2019, 5 (2): 276- 286.
doi: 10.1016/j.eng.2018.11.025
|
| 7 |
LI C , TAO W , CHENG J , et al. Robust multichannel EEG compressed sensing in the presence of mixed noise. IEEE Sensors Journal, 2019, 19 (22): 10574- 10583.
doi: 10.1109/JSEN.2019.2930546
|
| 8 |
祁振民, 张冰涛, 宋宇博. 基于跨尺度EEG特征融合的疲劳驾驶检测. 兰州交通大学学报, 2023, 42 (4): 66- 72.
|
|
QI Z M , ZHANG B T , SONG Y B . Fatigue driving detection method based on cross-scale EEG feature fusion. Journal of Lanzhou Jiaotong University, 2023, 42 (4): 66- 72.
|
| 9 |
宗少杰, 董芳, 程永欣, 等. 脑电信号在疲劳驾驶检测中的应用与挑战. 生物化学与生物物理进展, 2024, 51 (7): 1645- 1669.
|
|
ZONG S J , DONG F , CHENG Y X , et al. Eeg signals in the application of fatigue test and challenge. Progress in Biochemistry and Biophysics, 2024, 51 (7): 1645- 1669.
|
| 10 |
YANG B B , HUANG Y H , LI Z Y , et al. Management of Post-Stroke Depression (PSD) by electroencephalography for effective rehabilitation. Engineered Regeneration, 2023, 4 (1): 44- 54.
doi: 10.1016/j.engreg.2022.11.005
|
| 11 |
HWANG S , HONG K , SON G , et al. Learning CNN features from DE features for EEG-based emotion recognition. Pattern Analysis and Applications, 2020, 23 (3): 1323- 1335.
doi: 10.1007/s10044-019-00860-w
|
| 12 |
ZHENG W L , LIU W , LU Y F , et al. EmotionMeter: a multimodal framework for recognizing human emotions. IEEE Transactions on Cybernetics, 2019, 49 (3): 1110- 1122.
doi: 10.1109/TCYB.2018.2797176
|
| 13 |
TSAI H F , GAJDA J , SLOAN T F W , et al. Usiigaci: instance-aware cell tracking in stain-free phase contrast microscopy enabled by machine learning. SoftwareX, 2019, 9, 230- 237.
doi: 10.1016/j.softx.2019.02.007
|
| 14 |
CRAIK A , HE Y T , CONTRERAS-VIDAL J L . Deep learning for Electroencephalogram (EEG) classification tasks: a review. Journal of Neural Engineering, 2019, 16 (3): 031001.
doi: 10.1088/1741-2552/ab0ab5
|
| 15 |
GOH S K , ABBASS H A , TAN K C , et al. Spatio-spectral representation learning for electroencephalographic gait-pattern classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26 (9): 1858- 1867.
doi: 10.1109/TNSRE.2018.2864119
|
| 16 |
CAI Q , CUI G C , WANG H X . EEG-based emotion recognition using multiple kernel learning. Machine Intelligence Research, 2022, 19 (5): 472- 484.
doi: 10.1007/s11633-022-1352-1
|
| 17 |
GAO Z K , WANG X M , YANG Y X , et al. EEG-based spatio-temporal convolutional neural network for driver fatigue evaluation. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (9): 2755- 2763.
doi: 10.1109/TNNLS.2018.2886414
|
| 18 |
NATH D A, SINGH M. An efficient approach to EEG-based emotion recognition using LSTM network[C]// Proceedings of the 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA). Washington D. C, USA: IEEE Press, 2020: 88-92.
|
| 19 |
SHEYKHIVAND S , REZAⅡ T , MOUSAVI Z , et al. Automatic detection of driver fatigue based on EEG signals using a developed deep neural network. Electronics, 2022, 11 (14): 2169.
doi: 10.3390/electronics11142169
|
| 20 |
CHOWDARY M K , ANITHA J , HEMANTH D J . Emotion recognition from EEG signals using recurrent neural networks. Electronics, 2022, 11 (15): 2387.
doi: 10.3390/electronics11152387
|
| 21 |
DANILUK M, ROCKTÄSCHEL T, WELBL J, et al. Frustratingly short attention spans in neural language modeling[EB/OL]. [2024-04-08]. https://arxiv.org/abs/1702.04521.
|
| 22 |
|
| 23 |
TAO W , LI C , SONG R C , et al. EEG-based emotion recognition via channel-wise attention and self attention. IEEE Transactions on Affective Computing, 2023, 14 (1): 382- 393.
doi: 10.1109/TAFFC.2020.3025777
|
| 24 |
SÁNCHEZ-HERNÁNDEZ S E , SALIDO-RUIZ R A , TORRES-RAMOS S , et al. Evaluation of feature selection methods for classification of epileptic seizure EEG signals. Sensors, 2022, 22 (8): 3066.
doi: 10.3390/s22083066
|
| 25 |
JAMAL S, CRUZ M V, CHAKRAVARTHY S, et al. Integration of EEG and eye tracking technology: a systematic review[C]//Proceedings of the IEEE Southeast Conference 2023. Washington D.C., USA: IEEE Press, 2023: 209-216.
|
| 26 |
朱光明, 张宇, 鲁特刚, 等. 基于眼动的人机交互辅助技术研究. 人类工效学, 2022, 28 (5): 25- 31.
|
|
ZHU G M , ZHANG Y , LU T G , et al. Research on HCI assistant technology based on eye movement. Chinese Journal of Ergonomics, 2022, 28 (5): 25- 31.
|
| 27 |
ZHENG W L , LU B L . A multimodal approach to estimating vigilance using EEG and forehead EOG. Journal of Neural Engineering, 2017, 14 (2): 026017.
doi: 10.1088/1741-2552/aa5a98
|
| 28 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2018: 3-19.
|
| 29 |
BELOUSOV A I , VERZAKOV S A , VON FRESE J . A flexible classification approach with optimal generalisation performance: support vector machines. Chemometrics and Intelligent Laboratory Systems, 2002, 64 (1): 15- 25.
doi: 10.1016/S0169-7439(02)00046-1
|
| 30 |
YUAN D Y , YUE J W , XIONG X F , et al. A regression method for EEG-based cross-dataset fatigue detection. Frontiers in Physiology, 2023, 14, 1196919.
doi: 10.3389/fphys.2023.1196919
|
| 31 |
KUANG H H, QU J. LSTM model with self-attention mechanism for EEG based cross-subject fatigue detection[C]// Proceedings of the IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC). Washington D.C., USA: IEEE Press, 2021: 148-153.
|
| 32 |
PAULO J R , PIRES G , NUNES U J . Cross-subject zero calibration driver's drowsiness detection: exploring spatiotemporal image encoding of EEG signals for convolutional neural network classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 905- 915.
doi: 10.1109/TNSRE.2021.3079505
|
| 33 |
CUI J , LAN Z R , SOURINA O , et al. EEG-based cross-subject driver drowsiness recognition with an interpretable convolutional neural network. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (10): 7921- 7933.
doi: 10.1109/TNNLS.2022.3147208
|