Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (10): 369-380. doi: 10.19678/j.issn.1000-3428.0070067

• Development Research and Engineering Application • Previous Articles     Next Articles

Short-term Power Load Forecasting Based on Dynamic Multi-Scale and Dual Attention Mechanisms

ZHU Li1, GAO Jingkai1,*(), ZHU Chunqiang2,3, DENG Fan1   

  1. 1. School of Computer Science and Technology, Xi′an University of Science and Technology, Xi′an 710054, Shaanxi, China
    2. School of Computer Science and Technology, Xi′an Jiaotong University, Xi′an 710049, Shaanxi, China
    3. State Grid Shaanxi Electric Power Company Training Center, Xi′an 710032, Shaanxi, China
  • Received:2024-07-02 Revised:2024-08-14 Online:2025-10-15 Published:2024-11-14
  • Contact: GAO Jingkai

基于动态多尺度与双重注意力的短期电力负荷预测

朱莉1, 高靖凯1,*(), 朱春强2,3, 邓凡1   

  1. 1. 西安科技大学计算机科学与技术学院,陕西 西安 710054
    2. 西安交通大学计算机科学与技术学院,陕西 西安 710049
    3. .国网陕西省电力公司培训中心,陕西 西安 710032
  • 通讯作者: 高靖凯
  • 基金资助:
    国网陕西省电力有限公司科技项目(5226PX240003); 国网陕西省电力有限公司数字化项目(B326PX230001); 国网陕西省电力有限公司数字化项目(B326PX230000); 陕西省自然科学基础研究项目(2022JM317)

Abstract:

Short-term power load forecasting plays a crucial role in the optimal scheduling and safe operation of power systems. Power load data exhibit multiperiod characteristics, showing different patterns and trends at various time scales. Accurately extracting the scale size helps identify and separate these features. Current methods use a fixed patch length or a set of fixed patch lengths as steps and encode time series into segments called patches. However, these methods cannot adapt to the complex dynamic changes in real-world load series data. Therefore, this paper proposes a prediction model based on a dynamic Multi-scale and Dual Attention Transformer (MDAT). First, Successive Variational Mode Decomposition (SVMD) is used to separate different time patterns in the load series, and Fast Fourier Transform (FFT) is performed to extract the significant period of each pattern. Subsequently, based on the detected significant periods, the load series is divided into different time resolutions using patches of varying sizes, and multiple branches of a transformer are used to simultaneously model the dependencies of the sequences segmented at different scales. Next, dual attention is applied to these patches to capture the global correlations and local details. Finally, nonlinear feature fusion is performed on the outputs of each branch, and the final load prediction results are obtained by stacking multiple transformer modules. Experimental results on two public datasets demonstrate that the proposed model performs well in terms of prediction accuracy. Compared to the latest models based on Transformer and Multilayer Perceptron (MLP), the Mean Absolute Error (MAE) on the Australia and Morocco datasets is reduced by 10.26%-17.06% and 9.08%-70.25%, respectively.

Key words: short-term load forecasting, Successive Variational Mode Decomposition (SVMD), multi-scale features, dual attention, Transformer module

摘要:

短期电力负荷预测在电力系统的优化调度和安全运行中具有至关重要的作用。电力负荷数据具有多周期特性,在不同时间尺度上表现出不同的模式和趋势,准确提取尺度大小有助于识别和分离这些特征。目前方法通过使用一个或一组固定的patch长度作为步长,将称之为patches的片段来编码时间序列,但其无法适应现实世界负荷序列数据的复杂的动态变化。为此,提出一种基于动态多尺度与双重注意力的预测模型(MDAT)。首先,利用逐次变分模态分解(SVMD)分离负荷序列不同的时间模式,通过快速傅里叶变换(FFT)提取出每个模式的显著周期。其次,根据检测到的显著周期,将负荷序列以不同大小的patch划分为不同的时间分辨率,使用Transformer的多个分支同时建模不同尺度分割序列的依赖关系。然后,对这些patches进行双重注意力,以捕获全局相关性和局部细节。最后,对每个分支的输出进行非线性特征融合,通过堆叠多层Transformer模块得到最终的负荷预测结果。在两个公开数据集上的实验结果表明,该模型在预测精度指标上表现良好,相比最新的基于Transformer及多层感知器(MLP)的模型,在Australia数据集和Morocco数据集上平均绝对误差(MAE)分别降低了10.26%~17.06%和9.08%~70.25%。

关键词: 短期负荷预测, 逐次变分模态分解, 多尺度特征, 双重注意力, Transformer模块