| 1 |
EREN Y, KÜÇÜKDEMIRAL. A comprehensive review on deep learning approaches for short-term load forecasting. Renewable and Sustainable Energy Reviews, 2024, 189, 114031.
doi: 10.1016/j.rser.2023.114031
|
| 2 |
WAZIRALI R, YAGHOUBI E, ABUJAZAR M S S, et al. State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques. Electric Power Systems Research, 2023, 225, 109792.
doi: 10.1016/j.epsr.2023.109792
|
| 3 |
TARMANINI C, SARMA N, GEZEGIN C, et al. Short term load forecasting based on ARIMA and ANN approaches. Energy Reports, 2023, 9, 550- 557.
|
| 4 |
SMYL S, DUDEK G, PEȽKA P. Contextually enhanced ES-dRNN with dynamic attention for short-term load forecasting. Neural Networks, 2024, 169, 660- 672.
doi: 10.1016/j.neunet.2023.11.017
|
| 5 |
SAYED H A, WILLIAM A, SAID A M. Smart electricity meter load prediction in Dubai using MLR, ANN, RF, and ARIMA. Electronics, 2023, 12(2): 389.
doi: 10.3390/electronics12020389
|
| 6 |
AN W H, GAO B, LIU J H, et al. Predicting hourly heating load in residential buildings using a hybrid SSA-CNN-SVM approach. Case Studies in Thermal Engineering, 2024, 59, 104516.
doi: 10.1016/j.csite.2024.104516
|
| 7 |
WANG F, CHEN C, ZHANG H, et al. Short-term load forecasting based on variational mode decomposition and chaotic grey wolf optimization improved random forest algorithm. Journal of Applied Science and Engineering, 2022, 26(1): 69- 78.
|
| 8 |
INDIRA G, BHAVANI M, BRINDA R, et al. Electricity load demand prediction for microgrid energy management system using hybrid adaptive barnacle-mating optimizer with artificial neural network algorithm. Energy Technology, 2024, 12(5): 2301091.
doi: 10.1002/ente.202301091
|
| 9 |
LU Y T, WANG G C, HUANG X F, et al. Probabilistic load forecasting based on quantile regression parallel CNN and BiGRU networks. Applied Intelligence, 2024, 54(15): 7439- 7460.
|
| 10 |
陆心怡, 关艳, 高曦莹, 等. 面向工业用户的混合DWT-DE-RNN电力负荷预测. 机械设计与制造, 2024, 404(10): 73- 78.
|
|
LU X Y, GUAN Y, GAO X Y, et al. Hybrid DWT-DE-RNN power load forecasting for industrial users. Machinery Design & Manufacture, 2024, 404(10): 73- 78.
|
| 11 |
SMYL S, DUDEK G, PELKA P. ES-dRNN: a hybrid exponential smoothing and dilated recurrent neural network model for short-term load forecasting. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(8): 11346- 11358.
doi: 10.1109/TNNLS.2023.3259149
|
| 12 |
BARETH R, YADAV A, GUPTA S, et al. Daily average load demand forecasting using LSTM model based on historical load trends. IET Generation, Transmission & Distribution, 2024, 18(5): 952- 962.
|
| 13 |
|
|
LI L F, ZHANG J Y, CAO W B, et al. Short-term load prediction based on dual-attention temporal convolutional long short-term memory network[J/OL]. Journal of System Simulation, 2024: 1-12[2024-06-29]. https://doi.org/10.16182/j.issn1004731x.joss.24-0282. (in Chinese)
|
| 14 |
李新, 张旭, 余乐安, 等. 基于改进Transformer模型的景区短时客流预测研究. 中国管理科学, 2005(2): 13- 20.
|
|
LI X, ZHANG X, YU A L, et al. Enhancing short-term tourist flow forecasting and evaluation using an improved Transformer framework. Chinese Journal of Management Science, 2005(2): 13- 20.
|
| 15 |
李浩阳, 贺小伟, 王宾, 等. 基于改进Informer的云计算资源负载预测. 计算机工程, 2024, 50(2): 43- 50.
doi: 10.19678/j.issn.1000-3428.0066399
|
|
LI H Y, HE X W, WANG B, et al. Cloud computing resource load prediction based on improved informer. Computer Engineering, 2024, 50(2): 43- 50.
doi: 10.19678/j.issn.1000-3428.0066399
|
| 16 |
DU D Z, SU B, WEI Z W. Preformer: predictive transformer with multi-scale segment-wise correlations for long-term time series forecasting[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2023: 1-5.
|
| 17 |
NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with Transformers[C]//Proceedings of the 12th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2021: 157-168.
|
| 18 |
YU G, ZOU J, HU X, et al. Revitalizing multivariate time series forecasting: learnable decomposition with inter-series dependencies and intra-series variations modeling[C]//Proceedings of the 41st International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2020: 457-468.
|
| 19 |
CHEN P, ZHANG Y Y, CHENG Y Y, et al. Pathformer: multi-scale transformers with adaptive pathways for time series forecasting[EB/OL]. [2024-06-01]. https://arxiv.org/abs/2402.05956v5.
|
| 20 |
付文龙, 章轩瑞, 张海荣, 等. 多尺度特征提取与非线性融合的综合能源系统多元负荷短期预测. 电力系统及其自动化学报, 2023, 35(12): 89- 99.
|
|
FU W L, ZHANG X R, ZHANG H R, et al. Short-term multivariate load forecasting of integrated energy system based on multiscale feature extraction and nonlinear fusion. Proceedings of the CSU-EPSA, 2023, 35(12): 89- 99.
|
| 21 |
孟衡, 张涛, 王金, 等. 基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法. 电网技术, 2024, 48(10): 4297- 4305.
|
|
MENG H, ZHANG T, WANG J, et al. Multi-node short-term power load forecasting method based on multi-scale spatiotemporal graph convolution network and Transformer. Power System Technology, 2024, 48(10): 4297- 4305.
|
| 22 |
张鹏飞, 胡博, 胡展硕, 等. 基于STD-ST-Former的现货电价长步时空预测. 中国电机工程学报, 2024, 44(7): 2732- 2743.
|
|
ZHANG P F, HU B, LUO Z S, et al. Long step spatial-temporal prediction of spot electricity price using dual channel ST-Former framework based on seasonal trend decomposition. Proceedings of the CSEE, 2024, 44(7): 2732- 2743.
|
| 23 |
DU L F, XIN J, LABACH A, et al. MultiResFormer: transformer with adaptive multi-resolution modeling for general time series forecasting[EB/OL]. [2024-06-01]. https://arxiv.org/abs/2311.18780v2.
|
| 24 |
MO S T, WANG H X, LI B X, et al. TimeSQL: improving multivariate time series forecasting with multi-scale patching and smooth quadratic loss. Information Sciences, 2024, 671, 120652.
doi: 10.1016/j.ins.2024.120652
|
| 25 |
|
| 26 |
ZENG A L, CHEN M X, ZHANG L, et al. Are transformers effective for time series forecasting?. Artificial Intelligence, 2023, 37(9): 11121- 11128.
|
| 27 |
NAZARI M, SAKHAEI S M. Successive variational mode decomposition. Signal Processing, 2020, 174, 107610.
doi: 10.1016/j.sigpro.2020.107610
|
| 28 |
LUO X Y, WANG H, HAN T, et al. FFT-trans: enhancing robustness in mechanical fault diagnosis with Fourier transform-based transformer under noisy conditions. IEEE Transactions on Instrumentation Measurement, 2024, 73, 3381688.
|
| 29 |
BARRON J T. A general and adaptive robust loss function[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 4331-4339.
|
| 30 |
ZHANG J L, ZHANG Y J, LI D Z, et al. Forecasting day-ahead electricity prices using a new integrated model. International Journal of Electrical Power & Energy Systems, 2019, 105, 541- 548.
|
| 31 |
SALAM A, EL HIBAOUI A. Comparison of machine learning algorithms for the power consumption prediction[C]//Proceedings of the 6th International Renewable and Sustainable Energy Conference. Washington D. C., USA: IEEE Press, 2018: 1-5.
|
| 32 |
LIU S, YU H, LIAO C, et al. Pyraformer: low-complexity pyramidal attention for long-range time series modeling and forecasting[C]//Proceedings of International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2021: 256-267.
|
| 33 |
ZHOU T, MA Z Q, WEN Q S, et al. FEDformer: frequency enhanced decomposed transformer for long-term series forecasting[EB/OL]. [2024-06-01]. https://arxiv.org/abs/2201.12740v3.
|
| 34 |
ZHANG T P, ZHANG Y Z, CAO W, et al. Less is more: fast multivariate time series forecasting with light sampling-oriented MLP structures[EB/OL]. [2024-06-01]. https://arxiv.org/abs/2207.01186v1.
|