[1] 谢竞,邓月明,王润民.改进 YOLOv8s 的交通标识检测算法[J/
OL].计算机工程,1-16[2024-09-18].https://doi.org/10.19678/j.i
ssn.1000-3428.0068742.
Xie Jing, Deng Yueming, Wang Runmin. Improved YOLOv8s
Traffic Sign Detection Algorithm[J]. Computer Engineering,
doi: 10.19678/j.issn.1000-3428.0068742.
[2] 孙亭,杨洁,李家璇,等.面向弱光交通场景的 YOLOv7 道路
标 志 检 测 算 法 优 化[J/OL].计算机工程,1-10[2024-09-
18].https://doi.org/10.19678/j.issn.1000-3428.0068826.
Sun Ting, Yang Jie , Li Jiaxuan, Wang Yaozong. YOLOv7
Algorithm Enhancement for Road Sign Detection in LowLight Traffic Scenes[J]. Computer Engineering, doi:
10.19678/j.issn.1000-3428.0068826.
[3] Dong, J.; Ota, K.; Dong, M. UAV-Based Real-Time Survivor
Detection System in Post-Disaster Search and Rescue
Operations. IEEE J. Miniat. Air Space Syst. 2021, 2, 209–219.
[CrossRef]
[4] 缑永涛,李文博,段学锋.基于无人机的路桥病害检测系统[J].
测绘通报,2022,(12):141-146+169.DOI:10.13474/j.cnki.11-224
6.2022.0371.
GOU Yongtao,[1] 谢竞,邓月明,王润民.改进 YOLOv8s 的交通标识检测算法[J/
OL].计算机工程,1-16[2024-09-18].https://doi.org/10.19678/j.i
ssn.1000-3428.0068742.
Xie Jing, Deng Yueming, Wang Runmin. Improved YOLOv8s
Traffic Sign Detection Algorithm[J]. Computer Engineering,
doi: 10.19678/j.issn.1000-3428.0068742.
[2] 孙亭,杨洁,李家璇,等.面向弱光交通场景的 YOLOv7 道路
标 志 检 测 算 法 优 化[J/OL].计算机工程,1-10[2024-09-
18].https://doi.org/10.19678/j.issn.1000-3428.0068826.
Sun Ting, Yang Jie , Li Jiaxuan, Wang Yaozong. YOLOv7
Algorithm Enhancement for Road Sign Detection in LowLight Traffic Scenes[J]. Computer Engineering, doi:
10.19678/j.issn.1000-3428.0068826.
[3] Dong, J.; Ota, K.; Dong, M. UAV-Based Real-Time Survivor
Detection System in Post-Disaster Search and Rescue
Operations. IEEE J. Miniat. Air Space Syst. 2021, 2, 209–219.
[CrossRef]
[4] 缑永涛,李文博,段学锋.基于无人机的路桥病害检测系统[J].
测绘通报,2022,(12):141-146+169.DOI:10.13474/j.cnki.11-224
6.2022.0371.
GOU Yongtao, LI Wenbo, DUAN Xuefeng. Road and bridge di
sease detection system based on UAV[J]. Bulletin of Surveying
and Mapping, 2022, 0(12): 141-146,169.
[5] 杨普,赵远洋,李一鸣等.基于多源信息融合的农业空地一体 LI Wenbo, DUAN Xuefeng. Road and bridge di
sease detection system based on UAV[J]. Bulletin of Surveying
and Mapping, 2022, 0(12): 141-146,169.
[5] 杨普,赵远洋,李一鸣等.基于多源信息融合的农业空地一体化研究综述[J].农业机械学报,2021,52(S1):185-196.
YANG Pu, ZHAO Yuanyang, LI Yiming, WU Yufeng, LI Weir
an, LI Zhenbo. Review of Research on Integration of Agricultu
ral Air-ground Integration Based on Multi-source Information
Fusion[J]. Transactions of the Chinese Society for Agricultural
Machinery,2021,52(S0):185-196.
[6] 王林,赵莉,王无为.高动态场景下无人机空对空目标检测方
法研究[J/OL].计算机工程,1-14[2024-09-18].https://doi.org/1
0.19678/j.issn.1000-3428.0068620.
WANG lin , ZHAO li , WANG wuwei. Research on Air-to-Air
Target Detection Method for Unmanned Aerial Vehicles in Hig
h Dynamic Scenarios[J]. Computer Engineering, doi: 10.19678
/j.issn.1000-3428.0068620.
[7] Detection Leaderboard[EB/OL]. https://cocodataset. org/#detec
tion leaderboard.
[8] Domozi, Z.; Stojcsics, D.; Benhamida, A.; Kozlovszky, M.; Mo
lnar, A. Real Time Object Detection for Aerial Search and Resc
ue Missions for Missing Persons. In Proceedings of the 2020 I
EEE 15th International Conference of System of Systems Engi
neering (SoSE), Budapest, Hungary, 2–4 June 2020; pp. 519–5
24.
[9] Vaddi S, Kumar C, Jannesari A. Efficient Object Detection Mo
del for Real-Time UAV Applications[J]. arXiv preprint arXiv:1
906.00786, 2019.
[10] Chen W, Baojun Z, Linbo T, et al. Small vehicles detection bas
ed on UAV[J]. The Journal of Engineering, 2019, 2019(21): 78
94-7897.
[11] Cai Y, Du D, Zhang L, et al. Guided attention network for obje
ct detection and counting on drones[C]//Proceedings of the 28t
h ACM international conference on multimedia. 2020: 709717.
[12] Jiang D, Sun B, Su S, et al. FASSD: A feature fusion and spatia
l attention-based single shot detector for small object detection
[J]. Electronics, 2020, 9(9): 1536-1555.
[13] Guo J, Lou H, Chen H, et al. A new detection algorithm for ali
en intrusion on highway[J]. Scientific reports, 2023, 13(1):
10667.
[14] 潘玮,韦超,钱春雨,等.面向无人机视角下小目标检测的 YOL
Ov8s 改进模型[J/OL].计算机工程与应用:1-10[2024-04-16].
PAN Wei, WEI Chao, QIAN Chunyu, YANG Zhe. Improved Y
OLOv8s Model for Small Object Detection from Perspective o
f Drones[J]. Computer Engineering and Applications, 2024, 60
(9): 142-150.
[15] 柳进元,张明锋.基于 YOLOv5 算法的图像水深自动提取[J].
福建师范大学学报(自然科学版),2023,39(01):86-92.
Jinyuan, Liu Zhang Mingfeng. Automatic Image Water Depth
Extraction Based on YOLOv5 Algorithm [J]. Journal of Fujian
Normal University Journal of Fujian Normal University (Natur
al Science Edition) ,2023,39(01):86-92.
[16] 杨秀娟,曾智勇.基于 YOLOv5 的无人机航拍改进目标检测
算法 Dy-YOLO[J].福建师范大学学报(自然科学版),2024,40
(01):76-86.
Xiu-Juan YANG, Zhi-Yong ZENG. Dy-YOLO: Improved UAV
Image Target Detection Algorithm Base on YOLOv5 [J]. Journ
al of Fujian Normal University (Natural Sciences Edition) ,202
4,40(01):76-86.
[17] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks
for object detection[C]//2017 Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR'17). 2017: 2117-2125.
[18] Zhu L, Geng X, Li Z, et al. Improving YOLOv5 with attentio
n mechanism for detecting boulders from planetary images[J].
Remote Sensing, 2021, 13(18): 3776.
[19] 于傲泽,魏维伟,王平,等.基于分块复合注意力的无人机小目
标检测算法[J/OL].航空学报,1-12[2024-04-16].
Aoze YU, Weiwei WEI, Ping WANG, Jinqiang ZHANG,
Wenxiong KE. Small target detection algorithm for UAV
based on patch⁃wise co⁃attention[J]. Acta Aeronautica et
Astronautica Sinica, 2024, 45(14): 629148-629148.
[20] Dai, XY;Chen, YP; Xiao, B Dynamic Head: Unifying Obje
ct Detection Heads with Attentions 2021 IEEE/CVF CONFER
ENCE ON COMPUTER VISION AND PATTERN RECOGNI
TION, CVPR 2021 JUN 19-25, 2021
[21] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: Bounding B
ox Regression Loss with Dynamic Focusing Mechanism[EB/
OL].(2023-04-08)[2023-06-10] https://arxiv.org/abs/2301.100
51.
[22] Du D, Zhu P, Wen L, et al. VisDrone-DET2019: The vision me
ets drone object detection in image challenge results[C]//Proce
edings of the IEEE/CVF international conference on computer
vision workshops. 2019: 0-0
[23] XIAG S, BAI X, DING J, et al. DOTA: A large-scale dataset fo
r object detection in aerial images[C]//Pro- ceedings of the IEE
E Conference on Computer Vision and Pattern Recognition, 20
18: 3974-3983.
[24] Woo, Sanghyun, Jongchan Park, Joon-Young Lee 和 In So Kw
eon. 《CBAM: Convolutional Block Attention Module》. arXi
v, 2018 年 7 月 18 日. http://arxiv.org/abs/1807.06521.
[25] Cai, Yuxuan, Yizhuang Zhou, Qi Han, Jianjian Sun, Xiangwen
Kong, Jun Li 和 Xiangyu Zhang. 《Reversible Column Networ
ks》. arXiv, 2023 年 2 月 1 日. http://arxiv.org/abs/2212.1169
6.
[26] Li, Jiafeng, Ying Wen 和 Lianghua He. 《SCConv: Spatial andChannel Reconstruction Convolution for Feature Redundanc
y》. 收入 2023 IEEE/CVF Conference on Computer Vision an
d Pattern Recognition (CVPR), 6153–62. Vancouver, BC, Cana
da: IEEE, 2023. https://doi.org/10.1109/CVPR52729.2023.005
96.
[27] Qi, Yaolei, Yuting He, Xiaoming Qi, Yuan Zhang 和 Guanyu Y
ang. 《Dynamic Snake Convolution based on Topological Geo
metric Constraints for Tubular Structure Segmentation》. arXi
v, 2023 年 8 月 18 日. http://arxiv.org/abs/2307.08388.
[28] Li Y ,Xin Y ,Li X , et al.Correction: Omni-dimensional dynami
c convolution feature coordinate attention network for pneumo
nia classification.[J].Visual computing for industry, biomedicin
e, and art,2024,7(1):19.
[29] Lou H, Duan X, Guo J, et al. DC-YOLOv8: Small-Size Objec
t Detection Algorithm Based on Camera Sensor[J]. Electroni
cs, 2023, 12(10): 2323.
|