1 |
ESWARAN D, FALOUTSOS C. SedanSpot: detecting anomalies in edge streams[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Press, 2018: 953-958.
|
2 |
郭嘉琰, 李荣华, 张岩, 等. 基于图神经网络的动态网络异常检测算法. 软件学报, 2020, 31 (3): 748- 762.
|
|
GUO J Y , LI R H , ZHANG Y , et al. Graph neural network based anomaly detection in dynamic networks. Journal of Software, 2020, 31 (3): 748- 762.
|
3 |
CHANG Y Y, LI P, SOSIC R, et al. F-FADE: frequency factorization for anomaly detection in edge streams[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2021: 589-597.
|
4 |
RANSHOUS S, HARENBERG S, SHARMA K, et al. A scalable approach for outlier detection in edge streams using sketch-based approximations[C]//Proceedings of the 2016 SIAM International Conference on Data Mining. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2016: 189-197.
|
5 |
|
6 |
YUAN Z R , SHAO M L , YAN Q B . Motif-level anomaly detection in dynamic graphs. IEEE Transactions on Information Forensics and Security, 2023, 18, 2870- 2882.
doi: 10.1109/TIFS.2023.3272731
|
7 |
LIU Y X , PAN S R , WANG Y G , et al. Anomaly detection in dynamic graphs via Transformer. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (12): 12081- 12094.
doi: 10.1109/TKDE.2021.3124061
|
8 |
|
9 |
KHOSHRAFTAR S , AN A J . A survey on graph representation learning methods. ACM Transactions on Intelligent Systems and Technology, 2024, 15 (1): 1- 55.
|
10 |
|
11 |
LIU F C, WEN Y, ZHANG D X, et al. Log2Vec: a heterogeneous graph embedding based approach for detecting cyber threats within enterprise[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2019: 1777-1794.
|
12 |
张子宣, 宗学军, 何戡, 等. 基于CVAE-CatBoost的工业控制网络异常流量检测研究. 计算机工程, 2023, 49 (5): 173- 180.
doi: 10.19678/j.issn.1000-3428.0065478
|
|
ZHANG Z X , ZONG X J , HE K , et al. Research on abnormal traffic detection in industrial control network based on CVAE-CatBoost. Computer Engineering, 2023, 49 (5): 173- 180.
doi: 10.19678/j.issn.1000-3428.0065478
|
13 |
FRIJI H, OLIVEREAU A, SARKISS M. Efficient network representation for GNN-based intrusion detection[C]//Proceedings of International Conference on Applied Cryptography and Network Security. Berlin, Germany: Springer, 2023: 532-554.
|
14 |
JIANG W W . Graph-based deep learning for communication networks: a survey. Computer Communications, 2022, 185, 40- 54.
doi: 10.1016/j.comcom.2021.12.015
|
15 |
CAVILLE E , LO W W , LAYEGHY S , et al. Anomal-E: a self-supervised network intrusion detection system based on graph neural networks. Knowledge-Based Systems, 2022, 258, 110030.
doi: 10.1016/j.knosys.2022.110030
|
16 |
王振东, 徐振宇, 李大海, 等. 面向入侵检测的元图神经网络构建与分析. 自动化学报, 2023, 49 (7): 1530- 1548.
|
|
WANG Z D , XU Z Y , LI D H , et al. Metagraph neural network construction and analysis for intrusion detection. Acta Automatica Sinica, 2023, 49 (7): 1530- 1548.
|
17 |
郑海潇, 马梦帅, 文斌, 等. 基于GATv2的网络入侵异常检测方法. 数据与计算发展前沿, 2024, 6 (1): 179- 190.
|
|
ZHENG H X , MA M S , WEN B , et al. Network intrusion anomaly detection method based on GATv2. Frontiers of Data and Computing, 2024, 6 (1): 179- 190.
|
18 |
YU W C, CHENG W, AGGARWAL C C, et al. NetWalk: a flexible deep embedding approach for anomaly detection in dynamic networks[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery&Data Mining. New York, USA: ACM Press, 2018: 2672-2681.
|
19 |
CAI L, CHEN Z Z, LUO C, et al. Structural temporal graph neural networks for anomaly detection in dynamic graphs[C]//Proceedings of the 30th ACM International Conference on Information&Knowledge Management. New York, USA: ACM Press, 2021: 3747-3756.
|
20 |
ZHENG L, LI Z P, LI J, et al. AddGraph: anomaly detection in dynamic graph using attention-based temporal GCN[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. [S. l. ]: International Joint Conferences on Artificial Intelligence Organization, 2019: 4419-4425.
|
21 |
PAUDEL R, HUANG H H. PIKACHU: temporal walk based dynamic graph embedding for network anomaly detection[C]//Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS). Washington D.C., USA: IEEE Press, 2022: 1-7.
|
22 |
|
23 |
PENG H , LI J X , YAN H , et al. Dynamic network embedding via incremental skip-gram with negative sampling. Science China Information Sciences, 2020, 63 (10): 202103.
doi: 10.1007/s11432-018-9943-9
|
24 |
|
25 |
OUYANG L S, ZHANG Y Z, WANG Y P. Unified graph embedding-based anomalous edge detection[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington D.C., USA: IEEE Press, 2020: 1-8.
|
26 |
|
27 |
|