1] Li N ,Bai X ,Shen X , et al.Dense Pedestrian Detection
Based on GR-YOLO[J].Sensors,2024,24(14):4747-4747.
[2] J. Wang, K. Huang and J. Pi. RUP2S- YOLO: An
Improved YOLOv8-Based Algorithm for Dense
Pedestrian Detection[C]//2024 5th International Seminar
on Artificial Intelligence, Networking and Information
Technology (AINIT), Nanjing, China, 2024: 667-671.
[3] C. Bhagya and A. Shyna. An Overview of Deep Learning
Based Object Detection Techniques[C]//2019 1st
International Conference on Innovations in Information
and Communication Technology (ICIICT), Chennai, India,
2019:1-6.
[4] Y. -j. Liang, X. -p. Cui, X. -h. Xu and F. Jiang. A Review
on Deep Learning Techniques Applied to Object
Detection[C]//2020 7th International Conference on
Information Science and Control Engineering (ICISCE),
Changsha, China, 2020: 120-124.
[5] N. Ge and Y. Yong. A Survey of Vision-based Object
Detection[C]//2022 International Conference on Image
Processing, Computer Vision and Machine Learning
(ICICML), Xi’an, China, 2022:240-244.
[6] U. Dwivedi, K. Joshi, S. K. Shukla and A. S. Rajawat.
An Overview of Moving Object Detection Using YOLO
Deep Learning Models[C]//2024 2nd International
Conference on Disruptive Technologies (ICDT), Greater
Noida, India, 2024:1014-1020.
[7] 张阳婷,黄德启,王东伟,等.基于深度学习的目标检测
算 法 研 究 与 应 用 综 述 [J]. 计 算 机 工 程 与 应
用,2023,59(18):1-13.
Y. Zhang Y, Q. Huang, D. Wang, et al. Research and
application of object Detection algorithms based on
Deep Learning [J]. Computer Engineering and
Applications,2023,59(18):1-13.
[8] 徐彦威,李军,董元方,等.YOLO 系列目标检测算法综
述[J].计算机科学与探索,2024,18(09):2221-2238.
Y. Xu, J. Li, Y. Dong, et al. Review of YOLO series
target detection algorithms[J]. Exploration of Computer
Science and Technology,2024,18(09):2221-2238.
[9] Zhang W C, Fu C, Xie H Y, et al.Global context aware
RCNN for object detection[J].Neural Computing and
Applications, 2021, 33(18):11627-11639.
[10] Nitika A, Yogesh K, Rashmi K, et al.Automatic vehicle
detection system in different environment conditions
using fast R-CNN[J].Multimedia Tools and Applications,
2022, 81(13):18715-18735.
[11] Li X M, Xie Z J, Deng X, et al.Traffic sign detection
based on improved faster R-CNN for autonomous
driving[J].The Journal of Supercomputing, 2022,
78(6):7982-8002.
[12] Ujwalla G, Kamal H, Yogesh G. SIRA:scale illumination1] Li N ,Bai X ,Shen X , et al.Dense Pedestrian Detection
Based on GR-YOLO[J].Sensors,2024,24(14):4747-4747.
[2] J. Wang, K. Huang and J. Pi. RUP2S- YOLO: An
Improved YOLOv8-Based Algorithm for Dense
Pedestrian Detection[C]//2024 5th International Seminar
on Artificial Intelligence, Networking and Information
Technology (AINIT), Nanjing, China, 2024: 667-671.
[3] C. Bhagya and A. Shyna. An Overview of Deep Learning
Based Object Detection Techniques[C]//2019 1st
International Conference on Innovations in Information
and Communication Technology (ICIICT), Chennai, India,
2019:1-6.
[4] Y. -j. Liang, X. -p. Cui, X. -h. Xu and F. Jiang. A Review
on Deep Learning Techniques Applied to Object
Detection[C]//2020 7th International Conference on
Information Science and Control Engineering (ICISCE),
Changsha, China, 2020: 120-124.
[5] N. Ge and Y. Yong. A Survey of Vision-based Object
Detection[C]//2022 International Conference on Image
Processing, Computer Vision and Machine Learning
(ICICML), Xi’an, China, 2022:240-244.
[6] U. Dwivedi, K. Joshi, S. K. Shukla and A. S. Rajawat.
An Overview of Moving Object Detection Using YOLO
Deep Learning Models[C]//2024 2nd International
Conference on Disruptive Technologies (ICDT), Greater
Noida, India, 2024:1014-1020.
[7] 张阳婷,黄德启,王东伟,等.基于深度学习的目标检测
算 法 研 究 与 应 用 综 述 [J]. 计 算 机 工 程 与 应
用,2023,59(18):1-13.
Y. Zhang Y, Q. Huang, D. Wang, et al. Research and
application of object Detection algorithms based on
Deep Learning [J]. Computer Engineering and
Applications,2023,59(18):1-13.
[8] 徐彦威,李军,董元方,等.YOLO 系列目标检测算法综
述[J].计算机科学与探索,2024,18(09):2221-2238.
Y. Xu, J. Li, Y. Dong, et al. Review of YOLO series
target detection algorithms[J]. Exploration of Computer
Science and Technology,2024,18(09):2221-2238.
[9] Zhang W C, Fu C, Xie H Y, et al.Global context aware
RCNN for object detection[J].Neural Computing and
Applications, 2021, 33(18):11627-11639.
[10] Nitika A, Yogesh K, Rashmi K, et al.Automatic vehicle
detection system in different environment conditions
using fast R-CNN[J].Multimedia Tools and Applications,
2022, 81(13):18715-18735.
[11] Li X M, Xie Z J, Deng X, et al.Traffic sign detection
based on improved faster R-CNN for autonomous
driving[J].The Journal of Supercomputing, 2022,
78(6):7982-8002.
[12] Ujwalla G, Kamal H, Yogesh G. SIRA:scale illuminatiotnformation Processing (AIIIP), Hangzhou, China, 2023:
293-296.
[29] Y. Yang and X. Wang. An Improved YOLOv7-tiny-based
Lightweight Network for the Identification of Fish
Species[C]//2023 5th International Conference on
Robotics and Computer Vision (ICRCV), Nanjing, China,
2023: 188-192.
[30] H. Cai, J. Li, M. Hu, C. Gan and S. Han. EfficientViT:
Lightweight Multi-Scale Attention for High-Resolution
Dense Prediction[C]//2023 IEEE/CVF International
Conference on Computer Vision (ICCV), Paris, France,
2023:1364-1380.
[31] T. Wang and X. Lu. Face Forgery Detection Algorithm
Based on Improved MobileViT Network[C]//2023 8th
International Conference on Intelligent Computing and
Signal Processing (ICSP), Xi'an, China,
2023:1396-1400.
[32] H. Liu, Y. Zhang, S. Liu, M. Zhao and L. Sun.UAV
Wheat Rust Detection based on
FasterNet-YOLOv8[C]//2023 IEEE International
Conference on Robotics and Biomimetics (ROBIO),
Koh Samui, Thailand, 2023:1-6.
[33] G. Yang, J. Lei, Z. Zhu, S. Cheng, Z. Feng and R.
Liang.AFPN: Asymptotic Feature Pyramid Network for
Object Detection[C]//2023 IEEE International
Conference on Systems, Man, and Cybernetics (SMC),
Honolulu, Oahu, HI, USA, 2023:2184-2189.
[34] M. S. A. Vigil, M. M. Barhanpurkar, N. R. Anand, Y.
Soni and A. Anand. EYE SPY Face Detection and
Identification using YOLO[C]//2019 International
Conference on Smart Systems and Inventive Technology
(ICSSIT), Tirunelveli, India, 2019:2164-2169.
[35] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D.
Parikh and D. Batra.Grad-CAM: Visual Explanations
from Deep Networks via Gradient-Based
Localization[C]//2017 IEEE International Conference on
Computer Vision (ICCV), Venice, Italy, 2017:618-626.
|