[1] IBM. What is threat hunting?[EB/OL]. [2025-02-10].
https://www.ibm.com/think/topics/threat-hunting.
[2] GAO Y, LI X, PENG H, et al. Hincti: A cyberthreat
intelligence modeling and identification system based on
heterogeneous information network[J]. IEEE Transactions
on Knowledge and Data Engineering, 2022, 34(2):
708-722.
[3] SATVAT K, GJOMEMO R, VENKATAKRISHNAN V N.
Extractor: Extracting attack behavior from threat
reports[C]//2021 IEEE European Symposium on Security
and Privacy (EuroS&P). New York, USA: IEEE Press,
2021: 598-615.
[4] REN Y, XIAO Y, ZHOU Y, et al. CSKG4APT: A
cybersecurity knowledge graph for advanced persistent
threat organization attribution[J]. IEEE Transactions on
Knowledge and Data Engineering, 2022, 35(6):
5695-5709.
[5] FARD N E, SELMIC R R, KHORASANI K. A review of
techniques and policies on cybersecurity using artificial
intelligence and reinforcement learning algorithms[J].
IEEE Technology and Society Magazine, 2023, 42(3):
57-68.
[6] SUFI F. An innovative gpt-based open-source intelligence
using historical cyber incident reports[J]. Natural
Language Processing Journal, 2024, 7: 100074.
[7] YAO Y, DUAN J, XU K, et al. A survey on large language
model (llm) security and privacy: The good, the bad, and
the ugly[J]. High-Confidence Computing, 2024: 100211.
[8] DEKEL L, LEYBOVICH I, ZILBERMAN P, et al. MABAT:
A multi-armed bandit approach for threat-hunting[J]. IEEE
Transactions on Information Forensics and Security, 2022,
18: 477-490.
[9] MILAJERDI S M, ESHETE B, GJOMEMO R, et al. Poirot:
Aligning attack behavior with kernel audit records for
cyber threat hunting[C]//Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security. New York: ACM Press, 2019: 1795-1812.
[10] NADEEM A, VERWER S, MOSKAL S, et al. Alert-driven
attack graph generation using s-pdfa[J]. IEEE Transactions
on Dependable and Secure Computing, 2021, 19(2):
731-746.
[11] KOCSIS L, SZEPESVÁRI C. Bandit based monte-carlo
planning[C]//European Conference on Machine Learning.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006:
292-293.
[12] ABU M S, SELAMAT S R, ARIFFIN A, et al. Cyber threat
intelligence-issue and challenges[J]. Indonesian Journal of
Electrical Engineering and Computer Science, 2018, 10(1):
371-379.
[13] WAGNER C, DULAUNOY A, WAGENER G, et al. MISP:
The design and implementation of a collaborative threat
intelligence sharing platform[C]//Proceedings of the 2016
ACM Workshop on Information Sharing and Collaborative
Security. New York: ACM Press, 2016: 49-56.
[14] WAGNER T D, MAHBUB K, PALOMAR E, et al. Cyber
threat intelligence sharing: Survey and research
directions[J]. Computers & Security, 2019, 87: 101589.
[15] 杨秀璋, 彭国军, 刘思德, 等. 面向 APT 攻击的溯源和
推理研究综述 [J/OL]. 软件学报 , 2025(1):
1–50[2024-12-14].
https://doi.org/10.13328/j.cnki.jos.007162.
YANG X Z, PENG G J, LIU S D, et al. Survey on
attribution and inference research for APT attacks[J/OL].
Journal of Software, 2025(1): 1-50[2024-12-14].
https://doi.org/10.13328/j.cnki.jos.007162. [16] MILAJERDI S M, GJOMEMO R, ESHETE B, et al.
Holmes: Real-time apt detection through correlation of
suspicious information flows[C]//2019 IEEE Symposium
on Security and Privacy (SP). Washington D.C., USA:
IEEE Press, 2019: 1137-1152.
[17] GAO P, SHAO F, LIU X, et al. Enabling efficient cyber
threat hunting with cyber threat intelligence[C]//2021
IEEE 37th International Conference on Data Engineering
(ICDE). Washington D. C., USA: IEEE Press, 2021:
193-204.
[18] ALSAHEEL A, NAN Y, MA S, et al. ATLAS: A
sequence-based learning approach for attack
investigation[C]//30th USENIX Security Symposium
(USENIX Security 21). [s.l.]: USENIX Association, 2021:
3005-3022.
[19] SUN N, DING M, JIANG J, et al. Cyber threat intelligence
mining for proactive cybersecurity defense: a survey and
new perspectives[J]. IEEE Communications Surveys &
Tutorials, 2023.
[20] 崔琳, 杨黎斌, 何清林, 等. 基于开源信息平台的威胁
情报挖掘综述[J]. 信息安全学报, 2022, 7(01): 1-26.
DOI:10.19363/J.cnki.cn10-1380/tn.2022.01.01.
CUI L, YANG L, HE Q, WANG M, et al. Survey of cyber
threat intelligence mining based on open source
information platform[J]. Journal of Cyber Security, 2022,
7(1).
[21] 李沁东, 陈兴蜀, 唐文佚. 开源威胁情报生产与应用综
述[J]. 网络空间安全科学学报,2023,1(01):59-80.
Li Q D, Chen X S, Tang W Y. A survey of open-source
threat intelligence production and application[J]. Journal
of Cybersecurity, 2023, 1(1): 59-80.
[22] SHAKYA A K, PILLAI G, CHAKRABARTY S.
Reinforcement learning algorithms: A brief survey[J].
Expert Systems with Applications, 2023: 120495.
[23] ZHONG L, WU J, LI Q, et al. A comprehensive survey on
automatic knowledge graph construction[J]. ACM
Computing Surveys, 2023, 56(4): 1-62.
[24] SHEN Y, CHEN J, HUANG P S, et al. M-walk: Learning to
walk over graphs using monte carlo tree
search[C]//Proceedings of the 32nd International
Conference on Neural Information Processing Systems
(NIPS’18). Red Hook, USA: Curran Associates Inc., 2018:
6787-6798.
[25] XIONG W, HOANG T, WANG W Y. DeepPath: A
reinforcement learning method for knowledge graph
reasoning[EB/OL]. (2018-07-07)[2025-02-10].
https://arxiv.org/abs/1707.06690.
[26] Vodopivec T, Samothrakis S, Ster B. On monte carlo tree
search and reinforcement learning[J]. Journal of Artificial
Intelligence Research, 2017, 60: 881-936.
[27] CHANG Y, WANG X, WANG J D, et al. A survey on
evaluation of large language models[J]. ACM Transactions
on Intelligent Systems and Technology, 2023.
[28] ZHAO Z R, LEE W S, HSU D. Large language models as
commonsense knowledge for large-scale task planning[J].
Advances in Neural Information Processing Systems, 2024,
36.
[29] HU B, ZHAO C Y, ZHANG P, et al. Enabling intelligent
interactions between an agent and an llm: A reinforcement
learning approach[EB/OL]. (2024-06-21)[2025-02-10].
https://arxiv.org/abs/2306.03604.
[30] SANNER S, BALOG K, RADLINSKI F, et al. Large
language models are competitive near cold-start
recommenders for language-and item-based
preferences[C]//Proceedings of the 17th ACM Conference
on Recommender Systems. New York, USA: ACM Press,
2023: 890-896.
[31] HOU Y P, ZHANG J J, LIN Z H, et al. Large language
models are zero-shot rankers for recommender
systems[C]//European Conference on Information
Retrieval. Cham: Springer, 2024: 364-381.
[32] HE Z K, XIE Z H, JHA R, et al. Large language models as
zero-shot conversational recommenders[C]//Proceedings
of the 32nd ACM International Conference on Information
and Knowledge Management. New York, USA: ACM
Press, 2023: 720-730.
[33] GAO Y F, XIONG Y, GAO X Y, et al. Retrieval-augmented
generation for large language models: A survey[EB/OL].
(2023-12-18)[2025-02-10].
https://arxiv.org/abs/2312.10997.
[34] MANI S K, ZHOU Y J, HSIEH K, et al. Enhancing
network management using code generated by large
language models[C]//Proceedings of the 22nd ACM
Workshop on Hot Topics in Networks. New York, USA:ACM Press, [2023]: 196-204.
[35] MENG X Y, LIN C G, WANG Y Q, et al. NetGPT:
Generative pretrained transformer for network
traffic[J/OL]. (2023-04-19)[2025-02-10].
https://arxiv.org/abs/2304.09513.
[36] ALI T, KOSTAKOS P. HuntGPT: Integrating machine
learning-based anomaly detection and explainable AI with
large language models (LLMs) [EB/OL].
(2023-09-27)[2025-02-10].
https://arxiv.org/abs/2309.16021.
[37] VirusTotal. VirusTotal - Analyze suspicious files, domains,
IPs and URLs to detect malware and other
breaches[EB/OL]. [2024-02-10].
https://www.virustotal.com/.
[38] ThreatBook. 微步在线 X 情报社区-威胁情报查询_威胁
分析平台 _ 开放社区 [EB/OL]. [2024-02-10].
https://x.threatbook.com/.
[39] RapidDNS. RapidDNS - Rapid DNS Information
Collection[EB/OL]. [2024-02-10]. https://rapiddns.io/.
[40] Hugging Face. Llama-3.3-70B-Instruct[EB/OL].
[2024-02-10].
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
/.
[41] Hugging Face. Qwen2.5-72B-Instruct[EB/OL].
[2024-02-10].
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/.
[42] Hugging Face. DeepSeek-R1-Distill-Qwen-32B[EB/OL].
[2024-02-10].
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Q
wen-32B/.
[43] Open AI. Model – OpenAI API[EB/OL]. [2024-02-10].
https://platform.openai.com/docs/models/gpt-3.5-turbo/
|