[1] LECUN Y, BENGIO Y, HINTON G. Deep learning[J].
Nature, 2015, 521(7553): 436-444.
[2] YU K H, BEAM A L, KOHANE I S. Artificial intelli
gence in healthcare[J]. Nature Biomedical Engineering,
2018, 2(10): 719-731.
[3] NING Z, ZHANG K, WANG X, et al. Joint computing
and caching in 5G-envisioned Internet of vehicles: A
deep reinforcement learning-based traffic control system
[J]. IEEE Transactions on Intelligent Transportation Syst
ems, 2020, 22(8): 5201-5212.
[4] AHISKA K, OZGOREN M K, LEBLEBICIOGLU M
K. Autopilot design for vehicle cornering through icy r
oads[J]. IEEE Transactions on Vehicular Technology, 20
17, 67(3): 1867-1880.
[5] GE Z, SONG Z, DING SX, et al. Data mining and
analytics in the process industry: The role of mach
ine learning[J]. IEEE Access,2017,5:20590-20616.
[6] KONEČNÝ J, MCMAHAN H B, RAMAGE D, et al.
Federated optimization: Distributed machine learning for
on-device intelligence[J]. arXiv preprint arXiv: 1610.025
27, 2016: 1-38.
[7] ZHANG L, LI A, PENG H, et al. Privacy-preserving
Data Selection for Horizontal and Vertical Federated Le
arning[J]. IEEE Transactions on Parallel and Distributed
Systems, 2024.
[8] 王汝言,陈伟,张普宁,等.异构物联网下资源高效的分层协
同联邦学习方法[J].电子与信息学报,2023,45(08):2847-28
55.
WANG R Y, CHEN W, ZHANG P N, et al. ResourceEfficient Hierarchical Collaborative Federated Learning i
n Heterogeneous Internet of Things[J]. Journal of Electr
onics & Information Technology,2023,45(08):2847-2855.
[9] LIM W Y B, NG J S, XIONG Z, et al. Decentralized
edge intelligence: A dynamic resource allocation frame
work for hierarchical federated learning[J]. IEEE Transa
ctions on Parallel and Distributed Systems, 2021, 33(3):
536-550.
[10] WANG Z, SONG M, ZHANG Z, et al. Beyond inferri
ng class representatives: User-level privacy leakage fro
m federated learning[C]//IEEE INFOCOM 2019-IEEE c
onference on computer communications. IEEE, 2019: 25
12-2520.
[11] MALEKZADEH M, BOROVYKH A, GÜNDÜZ D. Ho
nest-but-curious nets: Sensitive attributes of private inpu
ts can be secretly coded into the classifiers' outputs[C]//
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 2021: 825-84
4..
[12] NGUYEN T, LAI P, TRAN K, et al. Active membersh
ip inference attack under local differential privacy in fe
derated learning[J]. arXiv preprint arXiv:2302.12685, 20
23.
[13] CAO X, GONG N Z. Mpaf: Model poisoning attacks t
o federated learning based on fake clients[C]//Proceedin
gs of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 3396-3404.
[14] HE X, XU Y, ZHANG S, et al. Enhance membership i
nference attacks in federated learning[J]. Computers &
Security, 2024, 136: 103535.
[15] WIBAWA F, CATAK F O, SARP S, et al. Homomorph
ic encryption and federated learning based privacy-Prese
rving CNN training: COVID-19 detection use-case[C]//P
roceedings of the 2022 European Interdisciplinary Cyber
security Conference, 2022.
[16] ZHANG C, EKANUT S, ZHEN L, et al. Augmented
multi-party computation against gradient leakage in fede
rated learning[J]. IEEE Transactions on Big Data, 2022.
[17] MAHAWAGA ARACHCHIGE P C, LIU D, CAMTEPE
S, et al. Local differential privacy for federated learni
ng[C]//European Symposium on Research in Computer
Security. Cham: Springer International Publishing, 2022:
195-216
[18] BONAWITZ K, IVANOV V, KREUTER B, et al. Pract
ical secure aggregation for privacy-preserving machine l
earning[C]//proceedings of the 2017 ACM SIGSAC Con
ference on Computer and Communications Security. 201
7: 1175-1191.
[19] GUO X, LIU Z, LI J, et al. VeriFL: Communication-Ef
ficient and Fast Verifiable Aggregation for Federated Le
arning[J]. IEEE Transactions on Information Forensics a
nd Security, 2020, 16: 1736-1751.
[20] FU A, ZHANG X, XIONG N, et al. VFL: A verifiable
federated learning with privacy-preserving for big data
in industrial IoT[J]. IEEE Transactions on Industrial In
formatics, 2020, 18(5): 3316-3326.
[21] GAO S, LUO J, ZHU J, et al. VCD-FL: Verifiable, C
ollusion-resistant, and Dynamic Federated Learning[J]. I
EEE Transactions on Information Forensics and Security,
2023.
[22] LI T, GAO C, JIANG L, et al. Publicly verifiable priv
acy-preserving aggregation and its application in IoT[J].
Journal of Network and Computer Applications, 2019,
126: 39-44.
[23] HAHN C, KIM H, KIM M, et al. Versa: Verifiable sec
ure aggregation for cross-device federated learning[J]. I
EEE Transactions on Dependable and Secure Computin
g, 2021, 20(1): 36-52.
[24] 张首勋,王玲玲,耿克,等.融合零知识证明的去中心联邦学
习可信聚合方案[J/OL].计算机工程与应用,1-11[2025-03-
06].http://kns.cnki.net/kcms/detail/11.2127.tp.20240624.114
5.004.html.
ZHAGN S X, WANG L L, GENG K, et al. Trustful
Aggregation Scheme for Decentralized Federated Learni
ng Based on Zero Knowledge[J]. Computer Engineering
and Applications,1-11[2025-03-06].http://kns.cnki.net/kcm
s/detail/11.2127.tp.20240624.1145.004.html.
[25] AHMADI M, NOURMOHAMMADI R. zkFDL: An eff
icient and privacy-preserving decentralized federated lear
ning with zero knowledge proof[C]//2024 IEEE 3rd Inte
rnational Conference on AI in Cybersecurity (ICAIC). I
EEE, 2024: 1-10.
[26]魏立斐,张无忌,张蕾,等.基于本地差分隐私的异步横向联
邦安全梯度聚合方案[J].电子与信息学报,2024,46(07):301
0-3018.
WEI L F, ZHANG W J, ZHANG L, et al. A Secure
Gradient Aggregation Scheme Based on Local Different
ial Privacy in Asynchronous Horizontal Federated Learn
ing[J]. Journal of Electronics & Information Technology,
2024,46(07):3010-3018.
[27] LI X, QU Z, ZHAO S, et al. Lomar: A local defense
against poisoning attack on federated learning[J]. IEEE
Transactions on Dependable and Secure Computing, 202
1, 20(1): 437-450.
[28] SUN Z, KAIROUZ P, SURESH A T, et al. Can you r
eally backdoor federated learning? [J]. arxiv preprint ar
xiv:1911.07963, 2019.
[29] BURKHALTER L, LYCKLAMA H, VIAND A, et al.
Rofl: Attestable robustness for secure federated learning
[J]. arxiv preprint arxiv:2107.03311, 2021, 21.
[30] MCMAHAN B, MOORE E, RAMAGE D, et al. Com
munication-efficient learning of deep networks from dec
entralized data[C]//Artificial intelligence and statistics. P
MLR, 2017: 1273-1282.
[31] 李顺东,王道顺.现代密码学:理论,方法与研究前沿[M].科
学出版社,2009.
LI S D, WANG D S. Modern Cryptography: Theory,
Methods and Research Frontiers [M].China Science Pub
lishing & Media Ltd.2009
[32] 杨波.密码学中的可证明安全性[M].清华大学出版社,202
2.
YANG B. Provable security in cryptography[M].Tsinghu
a University Press.2022
[33] BÜNZ B, BOOTLE J, BONEH D, et al. Bulletproofs:
Short proofs for confidential transactions and more[C]//
2018 IEEE symposium on security and privacy (SP). I
EEE, 2018: 315-334. [34] YE H, LIU J, ZHEN H, et al. VREFL: Verifiable and
reconnection-efficient federated learning in IoT scenarios
[J]. Journal of Network and Computer Applications, 20
22, 207: 103486.
[35] LIU L, ZHANG J, SONG S H, et al. Client-edge-clou
d hierarchical federated learning[C]//ICC 2020-2020 IEE
E international conference on communications (ICC). IE
EE, 2020: 1-6.
[36] ZHU Y, WU Y, LUO Z, et al. Secure and verifiable
data collaboration with low-cost zero-knowledge proofs
[J]. arXiv preprint arXiv:2311.15310, 2023.
[37] WANG Z, DONG N, SUN J, et al. zkfl: Zero-knowle
dge proof-based gradient aggregation for federated learn
ing[J]. IEEE Transactions on Big Data, 2024.
|