[1] 苑玉彬, 吴一全, 赵朗月, 等. 基于深度学习的无人机
航拍视频多目标检测与跟踪研究进展[J]. 航空学报,
2023, 44(18): 6-36.
Yuan Yubin, Wu Yiquan, Zhao Langyue, et al. Research
Progress on Multi-Target Detection and Tracking in UAV
Aerial Videos Based on Deep Learning[J]. Acta
Aeronautica et Astronautica Sinica, 2023, 44(18): 6-36.
[2] Jiang P, Ergu D, Liu F, et al. A review of YOLO
algorithm developments[J]. Procedia Computer Science,
2022, 199: 1066-1073.
[3] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards
Real Time Object Detection with Region Proposal
Networks[J]. IEEE. T. Pattern. Anal. Mach. Intell., 2017,
39(6): 1137-1149.
[4] 王国明, 贾代旺. 基于YOLOv8 的小目标检测模型的优
化[J/OL]. 计算机工程, 1-10[2025-01-14].
Wang Guoming, Jia Daiwang. Optimization of Small
Target Detection Model Based on YOLOv8[J/OL].
Computer Engineering, 1-10[2025-01-14].
[5] Li H, Qu H. DASSF: Dynamic-Attention Scale-Sequence
Fusion for Aerial Object Detection[J]. arxiv preprint arxiv:
2406.12285, 2024.
[6] Su J, Qin Y, Jia Z, et al. MPE-YOLO: enhanced small
target detection in aerial imaging[J]. Scientific Reports,
2024, 14(1): 17799.
[7] 何植仟, 曹立杰. UAVAI-YOLO:无人机航拍图像的小
目标检测模型[J]. 智能科学与技术学报, 2024, 6(02):
262-271.
He Zhiqian, Cao Lijie. UAVAI-YOLO: A Small Object
Detection Model for UAV Aerial Images [J]. Journal of
Intelligent Science and Technology, 2024, 6(02): 262-271. [8] 蒋凌云, 杨金龙. 检测优化的标签多伯努利视频多目标
跟踪算法 [J]. 计 算 机 科 学 与 探 索 , 2023, 17(06):
1343-1358.
Jiang Lingyun, Yang Jinlong. Detection-Optimized Label
Multi-Bernoulli Algorithm for Video Multi-Target
Tracking[J]. Journal of Computer Science and Exploration,
2023, 17(06): 1343-1358.
[9] Wojke N, Bewley A, Paulus D. Simple online and
realtime tracking with a deep association metric[C]//2017
IEEE international conference on image processing (ICIP).
IEEE, 2017: 3645-3649.
[10] Bewley A, Ge Z, Ott L, et al. Simple online and realtime
tracking[C]//2016 IEEE international conference on image
processing (ICIP). IEEE, 2016: 3464-3468.
[11] Cao J, Pang J, Weng X, et al. Observation-centric sort:
Rethinking sort for robust multi-object
tracking[C]//Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2023:
9686-9696.
[12] Zhang Y, Wang C, Wang X, et al. Fairmot: On the
fairness of detection and re-identification in multiple
object tracking[J]. International journal of computer vision,
2021, 129: 3069-3087.
[13] Han K, Wang Y, Chen H, et al. A survey on vision
transformer[J]. IEEE transactions on pattern analysis and
machine intelligence, 2022, 45(1): 87-110.
[14] Sun P, Cao J, Jiang Y, et al. Transtrack: Multiple object
tracking with transformer[J]. arxiv preprint arxiv: 2012.
15460, 2020.
[15] Zhang Y, Sun P, Jiang Y, et al. Bytetrack: Multi-object
tracking by associating every detection box[C]//European
conference on computer vision. Cham: Springer Nature
Switzerland, 2022: 1-21.
[16] Aharon N, Orfaig R, Bobrovsky B Z. BoT-SORT: Robust
associations multi-pedestrian tracking. arxiv 2022[J]. arxiv
preprint arxiv: 2206. 14651.
[17] Wang Y H, Hsieh J W, Chen P Y, et al. Smiletrack:
Similarity learning for occlusion-aware multiple object
tracking[C]//Proceedings of the AAAI Conference on
Artificial Intelligence. 2024, 38(6): 5740-5748.
[18] You L, Chen Y, Xiao C, et al. Multi-Object Vehicle
Detection and Tracking Algorithm Based on Improved
YOLOv8 and ByteTrack[J]. Electronics, 2024, 13(15):
3033.
[19] Terven, J., Córdova-Esparza, D.-M., Romero-González,
J.-A. A Comprehensive Review of YOLO Architectures in
Computer Vision: From YOLOv1 to YOLOv8 and
YOLO-NAS[J]. Machine Learning and Knowledge
Extraction, 2023, 5 (4): 1680-1716.
[20] Sunkara R, Luo T. No more strided convolutions or
pooling: A new CNN building block for low-resolution
images and small objects[C]//Joint European conference
on machine learning and knowledge discovery in
databases. Cham: Springer Nature Switzerland, 2022:
443-459.
[21] Yun S, Ro Y. Shvit: Single-head vision transformer with
memory efficient macro design[C]//Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2024: 5756-5767.
[22] Yang L, Zhang R Y, Li L, et al. Simam: A simple,
parameter-free attention module for convolutional neural
networks[C]//International conference on machine
learning. PMLR, 2021: 11863-11874.
[23] Li J, Wen Y, He L. Scconv: Spatial and channel
reconstruction convolution for feature
redundancy[C]//Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. Piscataway:
IEEE, 2023: 6153-6162.
[24] Li C, Zhou A, Yao A. Omni-dimensional dynamic
convolution[J]. arxiv preprint arxiv: 2209. 07947, 2022.
[25] Chen J, Kao S, He H, et al. Run, don't walk: chasing
higher FLOPS for faster neural networks[C]//Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition. 2023: 12021-12031.
[26] Wang, C.-Y., Yeh, I. H., Mark Liao, H.-Y. YOLOv9:
Learning What You Want to Learn Using Programmable
Gradient Information[C]. In Computer Vision – ECCV
2024, 2025; 1-21.
[27] Wang, A., Chen, H., Liu, L., etc. YOLOv10: Real-Time
End-to-End Object Detection[C]. In NeurIPS 2024, 2024;
1-21.
[28] Huang J, Wang K, Hou Y, et al. LW-YOLO11: A
Lightweight Arbitrary-Oriented Ship Detection Method
Based on Improved YOLO11[J]. Sensors, 2024, 25(1): 65.
[29] Zhang Y, Xie H, Jia Y, et al. AIPT: Adaptive information
perception for online multi-object tracking[J].
Knowledge-Based Systems, 2024, 285: 111369.
[30] Zhang Y, Wang T, Zhang X. Motrv2: Bootstrap**
end-to-end multi-object tracking by pretrained object
detectors[C]//Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2023:
22056-22065.
|