[1] LIANG H, LEE S, SUN J, et al. Unraveling the causes of
the Seoul Halloween crowd-crush disaster[J]. PLoS one,
2024, 19(7): e0306764.
[2] 许敏, 胡滨. 密集场景下的人群拥挤检测研究综述[J].
计算机工程, doi: 10.19678/j.issn.1000-3428.0069340.
XU Min and HU Bin. Survey of Research on Crowd
Congestion Detection in Dense Scenarios[J]. Computer
Engineering, doi: 10.19678/j.issn.1000-3428.0069340.
[3] TYAGI B, NIGAM S, SINGH R. A review of deep
learning techniques for crowd behavior analysis[J].
Archives of Computational Methods in Engineering, 2022,
29(7): 5427-5455.
[4] PANG G, SHEN C, CAO L, et al. Deep learning for
anomaly detection: A review[J]. ACM computing surveys
(CSUR), 2021, 54(2): 1-38.
[5] SAMAILA Y A, SEBASTIAN P, SINGH N S S, et al.
Video Anomaly Detection: A Systematic Review of Issues
and Prospects[J]. Neurocomputing, 2024: 127726.
[6] MEHRAN R, OYAMA A, SHAH M. Abnormal crowd
behavior detection using social force model[C]//2009
IEEE Conference on Computer Vision and Pattern
Recognition. Miami, USA: IEEE, 2009: 935-942.
[7] WANG L, DONG M. Real-time detection of abnormal
crowd behavior using a matrix approximation-based
approach[C]//2012 19th IEEE International Conference on
Image Processing. Orlando, USA: IEEE, 2012: 2701-2704.
[8] SHEHAB D, AMMAR H. Statistical detection of a panic
behavior in crowded scenes[J]. Machine Vision and
Applications, 2019, 30(5): 919-931.
[9] DIREKOGLU C, SAH M, O’CONNOR N E. Abnormal
crowd behavior detection using novel optical flow-based
features[J]. 2017 14th IEEE International Conference on
Advanced Video and Signal Based Surveillance, AVSS
2017, 2017: 1-6.
[10] SINGH G, KHOSLA A, KAPOOR R. Crowd escape event
detection via pooling features of optical flow for intelligent
video surveillance systems[J]. Int. J. Image Graph. Signal
Process, 2019, 10: 40.
[11] 罗凡波, 王平, 梁思源, 等. 基于深度学习与稀疏光流
的人群异常行为识别[J]. 计算机工程, 2020, 46(4):
289-293, 300.
LUO Fanbo, WANG Ping, LIANG Siyuan, et al. Crowd
Abnormal Behavior Recognition Based on Deep Learning
and Sparse Optical Flow[J]. Computer Engineering, 2020,
46(4): 287-293,300.
[12] SHIGANG YUE, RIND F C. A Collision Detection
System for a Mobile Robot Inspired by the Locust Visual
System[C]//Proceedings of the 2005 IEEE International
Conference on Robotics and Automation. Barcelona, Spain:
IEEE, 2005: 3832-3837.
[13] SHIGANG YUE, RIND F C. Collision detection in
complex dynamic scenes using an LGMD-based visual
neural network with feature enhancement[J]. IEEE
Transactions on Neural Networks, 2006, 17(3): 705-716.
[14] HU B, YUE S, ZHANG Z. A rotational motion perception
neural network based on asymmetric spatiotemporal visual
information processing[J]. IEEE transactions on neural
networks and learning systems, 2017, 28(11): 2803-2821.
[15] 刘倡, 胡滨. 生物启发的人群突发局部聚集感知神经网
络[J]. 计算机工程与应用, 2022, 58(16): 164-174.
LIU C, HU B. Bio-Inspired Neural Network for Perceiving
Suddenly Localized Crowd Gathering[J]. Computer
Engineering and Applications, 2022, 58(16): 164-174.
[16] ZHAO Z, HU B. LGMD-based Neural Network forDetecting Abnormal Velocity Targets in Moving
Crowd[C]//2024 9th International Symposium on
Computer and Information Processing Technology
(ISCIPT). Xi'an, China: IEEE, 2024: 562-566.
[17] HU B, ZHANG Z, LI L. LGMD-based visual neural
network for detecting crowd escape behavior[C]//2018 5th
IEEE International Conference on Cloud Computing and
Intelligence Systems (CCIS). Nanjing, China: IEEE, 2018:
772-778.
[18] LAMB T D. Why rods and cones?[J]. Eye, 2016, 30(2):
179-185.
[19] GRIMES W N, SONGCO-AGUAS A, RIEKE F. Parallel
processing of rod and cone signals: retinal function and
human perception[J]. Annual review of vision science,
2018, 4(1): 123-141.
[20] WU S, WONG H S, YU Z. A Bayesian model for crowd
escape behavior detection[J]. IEEE transactions on circuits
and systems for video technology, 2013, 24(1): 85-98.
[21] WANG M, CHANG F, ZHANG Y. Crowd escape event
detection based on Direction-Collectiveness Model[J].
KSII Transactions on Internet and Information Systems
(TIIS), 2018, 12(9): 4355-4374.
[22] ALDISSI B, AMMAR H. Real-time frequency-based
detection of a panic behavior in human crowds[J].
Multimedia Tools and Applications, 2020, 79(33):
24851-24871.
[23] AMMAR H, CHERIF A. DeepROD: a deep learning
approach for real-time and online detection of a panic
behavior in human crowds[J]. Machine Vision and
Applications, 2021, 32(3): 57.
[24] FAROOQ M U, SAAD M N M, KHAN S D.
Motion-shape-based deep learning approach for
divergence behavior detection in high-density crowd[J].
The Visual Computer, 2022, 38(5): 1553-1577.
[25] JOSHI K V, PATEL N M. Anomaly Detection in
Surveillance Scenes Using Autoencoders[J]. SN Computer
Science, 2023, 4(6): 804.
[26] SHARIF M H, JIAO L, OMLIN C W. Deep crowd
anomaly detection: state-of-the-art, challenges, and future
research directions[J]. Artificial Intelligence Review, 2025,
58(5): 139.
[27] SHARIFANI K, AMINI M. Machine learning and deep
learning: A review of methods and applications[J]. World
Information Technology and Engineering Journal, 2023,
10(07): 3897-3904.
[28] ROKA S, DIWAKAR M, KARANWAL S. A review in
anomalies detection using deep learning[C]//Proceedings
of Third International Conference on Sustainable
Computing: SUSCOM 2021. Singapore: Springer, 2022:
329-338.
[29] IDREES S, MANOOKIN M B, RIEKE F, et al.
Biophysical neural adaptation mechanisms enable artificial
neural networks to capture dynamic retinal computation[J].
Nature Communications, 2024, 15(1): 5957.
[30] GRIFFIS K G, FEHLHABER K E, RIEKE F, et al. Light
adaptation of retinal rod bipolar cells[J]. Journal of
Neuroscience, 2023, 43(24): 4379-4389.
[31] GLORIANI A H, SCHÜTZ A C. Humans trust central
vision more than peripheral vision even in the dark[J].
Current Biology, 2019, 29(7): 1206-1210.
[32] LOPEZ-HAZAS J, MONTERO A, RODRIGUEZ F B.
Influence of bio-inspired activity regulation through neural
thresholds learning in the performance of neural
networks[J]. Neurocomputing, 2021, 462: 294-308.
[33] FONTAINE B, PEÑA J L, BRETTE R. Spike-threshold
adaptation predicted by membrane potential dynamics in
vivo[J]. PLoS computational biology, 2014, 10(4):
e1003560.
[34] HUANG C, RESNIK A, CELIKEL T, et al. Adaptive spike
threshold enables robust and temporally precise neuronal
encoding[J]. PLoS computational biology, 2016, 12(6):
e1004984.
[35] HOMBERG U, BRANDL C, CLYNEN E, et al.
Mas-allatotropin/Lom-AG-myotropin I immunostaining in
the brain of the locust, Schistocerca gregaria[J]. Cell and
Tissue Research, 2004, 318(2): 439-457.
[36] ZHU Y, DEWELL R B, WANG H, et al. Pre-synaptic
muscarinic excitation enhances the discrimination of
looming stimuli in a collision-detection neuron[J]. Cell
reports, 2018, 23(8): 2365-2378.
[37] WERNITZNIG S, RIND F C, ZANKEL A, et al. The
complex synaptic pathways onto a looming‐detector
neuron revealed using serial block‐face scanning electron
microscopy[J]. Journal of Comparative Neurology, 2022,530(2): 518-536.
[38] HU B, ZHANG Z. Bio-inspired visual neural network on
spatio-temporal depth rotation perception[J]. Neural
Computing and Applications, 2021, 33(16): 10351-10370.
[39] KAWAI F. Certain retinal horizontal cells have a
center-surround antagonistic organization[J]. Journal of
Neurophysiology, 2022, 128(5): 1337-1343.
[40] CABELLO-SOLORZANO K, ORTIGOSA DE ARAUJO
I, PEÑA M, et al. The impact of data normalization on the
accuracy of machine learning algorithms: a comparative
analysis[C]//International conference on soft computing
models in industrial and environmental applications.
Switzerland: Springer, 2023: 344-353.
[41] FERRYMAN J, SHAHROKNI A. Pets2009: Dataset and
challenge[C]//2009 Twelfth IEEE international workshop
on performance evaluation of tracking and surveillance.
Snowbird, USA: IEEE, 2009: 1-6.
[42] RABIEE H, HADDADNIA J, MOUSAVI H, et al. Novel
dataset for fine-grained abnormal behavior understanding
in crowd[C]//2016 13th IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS).
Colorado Springs, USA: IEEE, 2016: 95-101.
[43] DEGARDIN B, PROENÇA H. Human activity analysis:
Iterative weak/self-supervised learning frameworks for
detecting abnormal events[C]//2020 IEEE International
Joint Conference on Biometrics (IJCB). Houston, USA:
IEEE, 2020: 1-7.
[44] CHAN A B, VASCONCELOS N. Modeling, clustering,
and segmenting video with mixtures of dynamic
textures[J]. IEEE transactions on pattern analysis and
machine intelligence, 2008, 30(5): 909-926.
[45] YUE S, RIND F C. Redundant neural vision
systems-Competing for collision recognition roles[J].
IEEE Transactions on Autonomous Mental Development,
2013, 5(2): 173-186.
[46] 张娓娓 , 陈绥阳 , 陈 锐. 视频 监 控 下 利 用 改 进 型
C3D-RF 的人群异常行为检测[J]. 光学技术, 2021, 47(2):
187-195.
ZHANG Weiwei, CHEN Suiyang, CHEN Rui. Abnormal
crowd behavior detection using improved C3D-RF under
Video Surveillance[J]. Optical Technique, 2021, 47(2):
187-195.
[47] DENGXIONG X, BAO W, KONG Y. Multiple Instance
Relational Learning for Video Anomaly
Detection[C]//2021 International Joint Conference on
Neural Networks (IJCNN). Shenzhen, China: IEEE, 2021:
1-8.
[48] TRIPATHY S K, SUDHAMSH R, SRIVASTAVA S, et al.
MuST-POS: multiscale spatial-temporal 3D atrous-net and
PCA guided OC-SVM for crowd panic detection[J].
Journal of Intelligent & Fuzzy Systems, 2022, 42(4):
3501-3516.
[49] 徐桂菲, 王平, 罗凡波, 等. 基于卷积神经网络的人群
突散异常行为检测[J]. 计算机工程与设计, 2022, 43(05):
1389-1396.
XU Guifei, WANG Ping, LUO Fanbo, et al. Detection of
abrupt dispersal of abnormal human behavior based on
convolutional neural network[J]. Computer Engineering
and Design, 2022, 43(05): 1389-1396.
[50] FAN Z, YI S, WU D, et al. Video anomaly detection using
CycleGan based on skeleton features[J]. Journal of Visual
Communication and Image Representation, 2022, 85:
103508.
[51] ALAFIF T, ALZAHRANI B, CAO Y, et al. Generative
adversarial network based abnormal behavior detection in
massive crowd videos: a Hajj case study[J]. Journal of
Ambient Intelligence and Humanized Computing, 2022,
13(8): 4077-4088.
[52] 邢天祎, 郭茂祖, 陈加栋, 等. 基于空时对抗变分自编
码器的人群异常行为检测[J]. 智能系统学报, 2023,
18(5): 994-1004.
XING Tianyi, GUO Maozu, CHEN Jiadong, et al.
Detection of abnormal crowd behavior based on
spatial-temporal adversarial variational autoencoder[J].
CAAI Transactions on Intelligent Systems, 2023, 18(5):
994-1004.
|