[1] 葛奇, 张鹏, 韩明哲, 等. 纳米孔测序信号处理及其在 DNA 数据
存储的应用[J]. 中国生物工程杂志, 2021, 41(8): 75-89.
Ge, Q., Zhang, P., Han, M. Z., et al. Nanopore sequencing signalprocessing and its application in DNA data storage. China
Biotechnology, 2021, 41(8), 75–89.
[2] Das S, Vikalo H. Base calling for high-throughput short-read
sequencing: dynamic programming solutions[J]. BMC bioinformatics,
2013, 14: 1-10.
[3] 孟浩. 基于深度学习的纳米孔 DNA 测序碱基电信号识别算法研究
[D]. 东南大学, 2022.
Meng, H. Research on basecaller algorithms for nanopore DNA
sequencing based on deep learning [D]. Southeast University, 2022.
[4] Wick R R, Judd L M, Holt K E. Performance of neural network
basecalling tools for Oxford Nanopore sequencing[J]. Genome biology,
2019, 20: 1-10.
[5] 杜力安. 基于条件随机场的纳米孔测序信号识别[D]. 北京交通大学,
2022.
Du, L. A. Nanopore sequencing signal recognition based on conditional
random fields [D]. Beijing Jiaotong University, 2022.
[6] Pagès-Gallego M, de Ridder J. Comprehensive benchmark and
architectural analysis of deep learning models for nanopore sequencing
basecalling[J]. Genome Biology, 2023, 24(1): 71.
[7] 黄能. 纳米孔测序碱基识别、组装抛光及SNP识别算法研究[D]. 中
南大学, 2022.
Huang, N. Research on basecalling, assembly polishing, and SNP
identification algorithms for nanopore sequencing [D]. Central South
University, 2022.
[8] Vereecke N, Bokma J, Haesebrouck F, et al. High quality genome
assemblies of Mycoplasma bovis using a taxon-specific Bonito
basecaller for MinION and Flongle long-read nanopore sequencing[J].
BMC bioinformatics, 2020, 21: 1-16.
[9] Lv X, Chen Z, Lu Y, et al. An end-to-end Oxford Nanopore basecaller
using convolution-augmented transformer[C]//2020 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2020:
337-342.
[10] Huang N, Nie F, Ni P, et al. An attention-based neural network
basecaller for Oxford Nanopore sequencing data[C]//2019 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM).
IEEE, 2019: 390-394.
[11] Zeng J, Cai H, Peng H, et al. Causalcall: Nanopore basecalling using a
temporal convolutional network[J]. Frontiers in Genetics, 2020, 10:
1332.
[12] Zhang Y, Akdemir A, Tremmel G, et al. Nanopore basecalling from a
perspective of instance segmentation[J]. BMC bioinformatics, 2020, 21:
1-9.
[13] Miculinić N, Ratković M, Šikić M. MinCall-MinION end2end
convolutional
deep
learning
basecaller[J].
arXiv
preprint
arXiv:1904.10337, 2019.
[14] Wu Z, Liu Z, Lin J, et al. Lite transformer with long-short range
attention[J]. arXiv preprint arXiv:2004.11886, 2020.
[15] Boža V, Brejová B, Vinař T. DeepNano: deep recurrent neural networks
for base calling in MinION nanopore reads[J]. PloS one, 2017, 12(6):
e0178751.
[16] Strgar L, Harwath D. Phoneme segmentation using self-supervised
speech models[J]. arXiv preprint arXiv:2211.01461, 2022.
[17] Hannun A. Sequence modeling with ctc[J]. Distill, 2017, 2(11): e8.
[18] Teng H, Cao M D, Hall M B, et al. Chiron: translating nanopore raw
signal directly into nucleotide sequence using deep learning[J].
GigaScience, 2018, 7(5): giy037.
[19] Xu Z, Mai Y, Liu D, et al. Fast-bonito: A faster deep learning based
basecaller for nanopore sequencing[J]. Artificial Intelligence in the Life
Sciences, 2021, 1: 100011.
[20] Lou Q, Janga S C, Jiang L. Helix: Algorithm/architecture co-design for
accelerating nanopore genome base-calling[C]//Proceedings of the
ACM International Conference on Parallel Architectures and
Compilation Techniques. 2020: 293-304.
[21] Dunn T, Sadasivan H, Wadden J, et al. Squigglefilter: An accelerator for
portable virus detection[C]//MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 2021: 535-549.
[22] Silvestre-Ryan J, Holmes I. Pair consensus decoding improves accuracy
of neural network basecallers for nanopore sequencing[J]. Genome
biology, 2021, 22: 1-6.
[23] Mao H, Alser M, Sadrosadati M, et al. Genpip: In-memory acceleration
of genome analysis via tight integration of basecalling and read
mapping[C]//2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2022: 710-726.
[24] Shahroodi T, Singh G, Zahedi M, et al. Swordfish: A Framework for
Evaluating
Deep Neural Network-based Basecalling using
Computation-In-Memory with Non-Ideal Memristors[C]//Proceedings
of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture. 2023: 1437-1452.
[25] LI H. Minimap2: pairwise alignment for nucleotide sequences[J].
Bioinformatics, 2018, 34(18): 3094-3100.
[26] Chen T, Du Z, Sun N, et al. DianNao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning[C]. ACM ASPLOS, 2014:
269-284.
[27] Huawei Technologies. CANN: Compute Architecture for Neural
Networks White Paper[R]. Shenzhen: Huawei, 2020: 15-18.
[28] AMD. ROCm HIP Porting Guide[EB/OL]. https://rocm.docs.amd.com/,
2023: Section 3.2 API Compatibility.
|