[1] Baisware A, Sayankar B, Hood S. Review on recent
advances in human action recognition in video
data[C]//2019 9th International Conference on Emerging
Trends in Engineering and Technology-Signal and
Information Processing (ICETET-SIP-19). IEEE, 2019:
1-5.
[2] Tran T T M, Parker C, Tomitsch M. A review of virtual
reality
studies
on autonomous vehicle–pedestrian
interaction[J]. IEEE Transactions on Human-Machine
Systems, 2021, 51(6): 641-652.
[3] 张瑞, 李其申, 储珺. 基于 3D 卷积神经网络的人体动
作识别算法[J]. 计算机工程, 2019, 45(1): 259-263.
ZHANG Rui,LI Qishen,CHU Jun. Human Action
Recognition Algorithm Based on 3D Convolution Neural
Network[J]. Computer Engineering,2019, 45(1): 259-263.
[4] Caterini A L, Chang D E, Caterini A L, et al. Recurrent
neural
networks[C]. Deep neural networks in a
mathematical framework, 2018: 59-79.
[5] Han K, Xiao A, Wu E, et al. Transformer in transformer[J].
Advances in neural information processing systems, 2021,
34: 15908-15919.
[6] Han K, Wang Y, Chen H, et al. A survey on vision
transformer[J]. IEEE transactions on pattern analysis and
machine intelligence, 2022, 45(1): 87-110.
[7] Yan S, Xiong Y, Lin D. Spatial temporal graph
convolutional
networks
for
skeleton-based action
recognition[C]//Proceedings of the AAAI conference on
artificial intelligence. 2018:7444–7452
[8] 贺子泽,战荫伟.基于图卷积的局部特征细化动作识别方
法[J].计算机工程,2024,50(11):276-283.
He Zize, Zhan Yinwei. Action Recognition Method Based
on Local Feature Refinement of Graph Convolution [J].
Computer Engineering, 2024,50(11):276-283.
[9] Qiu H, Hou B. Multi-grained clip focus for skeleton-based
action recognition[J]. Pattern Recognition, 2024, 148:
110188.
[10] Shi L, Zhang Y, Cheng J, et al. Two-stream adaptive graph
convolutional
networks
for
skeleton-based action
recognition[C]//Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition.
2019:12026-12035.
[11] Zhang J, Ye G, Tu Z, et al. A spatial attentive and temporal
dilated
(SATD) GCN for skeleton‐based action
recognition[J].
CAAI Transactions on Intelligence
Technology, 2022, 7(1): 46-55.
[12] Xu B, Shu X. Pyramid self-attention polymerization
learning for semi-supervised skeleton-based action
recognition[J]. arXiv preprint arXiv:2302.02327, 2023.
[13] Duan H, Wang J, Chen K, et al. Pyskl: Towards good
practices for skeleton action recognition[C]//Proceedings
of the 30th ACM International Conference on Multimedia.
2022: 7351-7354.
[14] Shi L, Zhang Y, Cheng J, et al. Skeleton-based action
recognition
with
multi-stream
adaptive
graphconvolutional networks[J]. IEEE Transactions on Image
Processing, 2020, 29: 9532-9545.
[15] Tu Z, Zhang J, Li H, et al. Joint-bone fusion graph
convolutional network for semi-supervised skeleton action
recognition[J]. IEEE Transactions on Multimedia, 2022,
25: 1819-1831.
[16] Bian C, Feng W, Wang S. Self-supervised representation
learning for skeleton-based group activity
recognition[C]//Proceedings of the 30th ACM
International Conference on Multimedia. 2022:
5990-5998.
[17] Zhu A, Ke Q, Gong M, et al. Adaptive
local-component-aware graph convolutional network for
one-shot skeleton-based action
recognition[C]//Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. 2023:
6038-6047.
[18] Xiang W, Li C, Zhou Y, et al. Generative action
description prompts for skeleton-based action
recognition[C]//Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2023:
10276-10285.
[19] Shi L, Zhang Y, Cheng J, et al. Decoupled spatial-temporal
attention network for skeleton-based action-gesture
recognition[C]//Proceedings of the Asian conference on
computer vision. 2020: 38-53.
[20] Qin X, Cai R, Yu J, et al. An efficient self-attention
network for skeleton-based action recognition[J].
Scientific Reports, 2022, 12(1): 4111.
[21] Qiu H, Hou B, Ren B, et al. Spatio-temporal segments
attention for skeleton-based action recognition[J].
Neurocomputing, 2023, 518: 30-38.
[22] Liu X, Zhou S, Wang L, et al. Parallel attention interaction
network for few-shot skeleton-based action
recognition[C]//Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2023:
1379-1388.
[23] Xiong K, Zheng M, Xu Q, et al. Speal: Skeletal prior
embedded attention learning for cross-source point cloud
registration[C]//Proceedings of the AAAI Conference on
Artificial Intelligence. 2024, 38(6): 6279-6287.
[24] Cheng K, Zhang Y, He X, et al. Skeleton-based action
recognition with shift graph convolutional
network[C]//Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2020: 183-192.
[25] Shi L, Zhang Y, Cheng J, et al. Skeleton-based action
recognition with directed graph neural
networks[C]//Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2019: 7912-7921.
[26] Song Y F, Zhang Z, Shan C, et al. Richly activated graph
convolutional network for robust skeleton-based action
recognition[J]. IEEE Transactions on Circuits and Systems
for Video Technology, 2020, 31(5): 1915-1925.
[27] 刘宽,奚小冰,周明东.基于自适应多尺度图卷积网络的
骨架动作识别[J].计算机工程,2023,49(10):264-271.
Liu, K., Xi, X. B., & Zhou, M. D. Skeleton Action
Recognition Based on Adaptive Multi-Scale Graph
Convolutional Network[J]. Computer Engineering,2023, 49(10),
264 - 271.
[28] Tian H, Zhang Y, Wu H, et al. Multi-scale sampling
attention graph convolutional networks for skeleton-based
action recognition[J]. Neurocomputing, 2024: 128086.
[29] Yunhe W ,Yuxin X ,Shuai L .BCCLR: A Skeleton-Based
Action Recognition with Graph Convolutional Network
Combining Behavior Dependence and Context
Clues[J].Computers, Materials &
Continua,2024,78(3):4489-4507. |