[1] R. Shwartz-Ziv and A. Armon. Tabular data: Deep learning
is not all you need[J]. Information Fusion 2022(81):84–90.
[2] Wu K, Wu E, DAndrea M, et al. Machine learning
prediction of clinical trial operational efficiency[J]. The
AAPS Journal, 2022, 24(3):57.
[3] Yan J, Zheng B, Xu H, et al. Makimodels great on tabular prediction[J]. preprint
arXiv:2403.01841, 2024.
[4] 金丽华;陈圣波;张旭晴;汪自军. 电力输配电管理系统
关键技术研究[J]. 计算机工程, 2009, 35(5): 257-258.
JIN Li-hua; CHEN Sheng-bo; ZHANG Xu-qing; WANG
Zi-jun. Research on Key Technology of Power
Transportation and Distribution Management System[J].
Computer Engineering, 2009, 35(5): 257-258.
[5] 郭丽红;吴海涛. TDS 协议分析与漏洞检测[J]. 计算机
工程, 2009, 35(18): 127-129.
GUO Li-hong; WU Hai-tao. TDS Protocol Analysis and
Loophole Detection[J]. Computer Engineering, 2009,
35(18): 127-129.
[6] Chen J, Yan J, Chen Q, et al. Excelformer: A neural
network surpassing gbdts on tabular data[J]. preprint
arXiv:2301.02819, 2023.
[7] Zhengdong Luo, Abibulla Atawulla,Fengyi Yang et al.
TabCGOK: Intra-Class Groups Retrieval and Inter-Class
Ordinal Knowledge Augmented Network for Ordinal
Tabular Data Prediction[C]// ECAI 2024: 2242-2249.
[8] 冉烔宇, 汤梦姿, 解庆, 刘永坚. 基于信息融合的半监
督 有 序 分 类 框 架 [J]. 计 算 机 工 程 , doi:
10.19678/j.issn.1000-3428.00 69814
RAN Tongyu, TANG Mengzi, XIE Qing, LIU Yongjian. A
Semi-Supervised Ordinal Classification Framework Based
on Information Fusion.[J]. Computer Engineering, doi:
10.19678/j.issn.1000-3428.00 69814.
[9] Zha K, Cao P, Son J, et al. Rank-n-contrast: learning
continuous representations for regression[J]. NIPS, 2024,
36.
[10] Fanconi C, van Buchem M, Hernandez-Boussard T.
Natural language processing methods to identify oncology
patients at high risk for acute care with clinical notes[J].
AMIA Summits on Translational Science Proceedings,
2023: 138.
[11] Franks B J, Dinkelmann B, Fellenz S, et al. Ordinal
Regression for Difficulty Estimation of StepMania
Levels[J].preprint arXiv:2301.09485, 2023.
[12] X. Huang, A. Khetan, M. Cvitkovic, and Z. Karnin.
Tabtransformer: Tabular data modeling using contextual
embeddings[J]. preprint arXiv:2012.06678, 2020.
[13] Song W, Shi C, Xiao Z, et al. Autoint: Automatic feature
interaction learning via self-attentive neural
networks[C]//ACM CIKM. 2019: 1161-1170.
[14] Gorishniy Y, Rubachev I, Kartashev N, et al. Tabr:
Unlocking the power of retrieval-augmented tabular deep
learning[J]. preprint arXiv:2307.14338, 2023.
[15] Nader Y, Sixt L, Landgraf T. DNNR: Differential nearest
neighbors regression[C]// ICML, 2022: 16296-16317.
[16] Hu W, Yuan Y, Zhang Z, et al. PyTorch Frame: A Modular
Framework for Multi-Modal Tabular Learning[J]. preprint
arXiv:2404.00776, 2024.
[17] Friedman J H. Greedy function approximation: a gradient
boosting machine[J]. Annals of statistics, 2001:
1189-1232.
[18] Chen T, Guestrin C. Xgboost: A scalable tree boosting
system[C]//ACM SIGKDD. 2016: 785-794.
[19] Ke G, Meng Q, Finley T, et al. Lightgbm: A highly efficient
gradient boosting decision tree[C]// NIPS, 2017, 30.
[20] LProkhorenkova L, Gusev G, Vorobev A, et al. CatBoost:
unbiased boosting with categorical features[C]// NIPS,
2018, 31.
[21] Vaswani A. Attention is all you need[C]// NIPS, 2017.
[22] Arik S Ö, Pfister T. Tabnet: Attentive interpretable tabular
learning[C]//AAAI. 2021, 35(8): 6679-6687.
[23] Somepalli G, Goldblum M, Schwarzschild A, et al. Saint:
Improved neural networks for tabular data via row
attention and contrastive pre-training[J]. preprint
arXiv:2106.01342, 2021.
[24] Kossen J, Band N, Lyle C, et al. Self-attention between
datapoints: Going beyond individual input-output pairs in
deep learning[J]. NIPS, 2021, 34: 28742-28756. [25] Shi X, Cao W, Raschka S. Deep neural networks for
rank-consistent ordinal regression based on conditional
probabilities[J]. Pattern Analysis and Applications, 2023,
26(3): 941-955.
[26] Sánchez-Monedero J, Gutiérrez P A, Tiňo P, et al.
Exploitation of pairwise class distances for ordinal
classification[J]. Neural computation, 2013, 25(9):
2450-2485.
[27] Twomey N, Poyiadzi R, Mann C, et al. Ordinal regression
as structured classification[J]. preprint arXiv:1905.13658,
2019.
[28] Fuchs T S, Keshet J. Thor: threshold-based ranking loss for
ordinal regression[J]. preprint arXiv:2205.04864, 2022.
[29] Gutiérrez P A, Perez-Ortiz M, Sanchez-Monedero J, et al.
Ordinal regression methods: survey and experimental
study[J]. IEEE TKDE, 2015, 28(1): 127-146.
[30] Gorishniy Y, Rubachev I, Khrulkov V, et al. Revisiting
deep learning models for tabular data[J]. NIPS, 2021, 34:
18932-18943.
[31] Chen K Y, Chiang P H, Chou H R, et al. Trompt: Towards a
better deep neural network for tabular data[J]. preprint
arXiv:2305.18446, 2023.
[32] Ahamed M A, Cheng Q. MambaTab: A plug-and-play
model for learning tabular data[C]// IEEE 7th International
Conference on Multimedia Information Processing and
Retrieval (MIPR). IEEE, 2024: 369-375.ng pre-trained language
|