[1] CHEAH C S, SELVARAJAH V. A Review of Common
Web Application Breaching Techniques (SQLi, XSS,
CSRF)[C]//Proceedings of the 3rd International
Conference on Integrated Intelligent Computing
Communication & Security (ICIIC 2021). Bangalore,
India: Atlantis Press, 2021: 540-547.
[2] ZHANG L, ZHANG D, WANG C, et al. ART4SQLi:
The ART of SQL injection vulnerability discovery[J].
IEEE Transactions on Reliability, 2019, 68(4):
1470-1489.
[3] 曲振青.云环境下的WAF自动绕过方法研究[D].杭州:
浙江大学,2023.
QU Z Q. Researching on WAF Automatic Bypassing in
Cloud
Environments[D].
University,2023. (in Chinese)
Hangzhou:
Zhejiang
[4] 李莉,翟征德.一种基于Web应用防火墙的主动安全加
固方案[J].计算机工程与应用,2011,47(25):104-106.
LI L,HUO Z D. An active security hardening scheme
based on Web application firewall[J]. Computer
Engineering and Applications. 2011,47(25):104-106.
(in Chinese)
[5] VARTOUNI A M, TESHNEHLAB M, KASHI S S.
Leveraging deep neural networks for anomalybased
web application firewall[J]. IET Information Security,
2019, 13(4): 352-361.
[6] LIANG H, LI X, XIAO D, et al. Generative Pre-Trained
Transformer-Based Reinforcement Learning for
Testing
Web Application Firewalls[J]. IEEE
Transactions
on
Dependable
Computing,2024, 21(1), 309-324.
and
Secure
[7] HOFMANN V, PIERREHUMBERT J, SCHÜTZE H.
Dynamic Contextualized Word Embeddings[C]//
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing. Bangkok, Thailand: Association
for Computational Linguistics, 2021: 6970-6984.
[8] DEVLIN J, CHANG M W, LEE K, et al. BERT:
Pre-training of Deep Bidirectional Transformers for
Language Understanding[C]//Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Minneapolis, Minnesota,
USA: Association for Computational Linguistics, 2019:
4171-4186.
[9] BROWN T B, MANN B, RYDER N, et al. Language
models are few-shot learners[C]//Proceedings of the
34th International Conference on Neural Information
Processing Systems. Vancouver, Canada: Neural
Information Processing Systems Foundation, 2020:
1877-1901.
[10] REN R, LIU Y. Towards Understanding How
Transformers
Learn
In-context
Through
a
Representation Learning Lens[C]//Proceedings of the
38th Annual Conference on Neural Information
Processing Systems. Vancouver, Canada: Neural
Information Processing Systems Foundation, 2024.
[11] MAO X, LI Z, LI Q, et al. BERT-DXLMA: Enhanced
representation learning and generalization model for
English text classification[J]. Neurocomputing, 2025,
622: 129325.
[12] 姚琳琳,何倩,王勇,等.基于分布式对等架构的 Web
应用防火墙[J].计算机工程,2012,38(22):114-118.
YAO L L, HE Q, WANG Y, et al. Web application
firewall
based
on
distributed
peer-to-peer
architecture[J]. Computer Engineering, 2012, 38 (22):
114-118. (in Chinese)
[13] RISTIC I. ModSecurity Handbook[M]. London, U.K.:
Feisty Duck, 2010.
[14] LIU T, QI Y, SHI L, YAN J. Locate-Then-Detect:
Real-time web attack detection via attention-based
deep neural networks[C]//Proceedings of the 28th
International
Joint
Conference
on
Artificial
Intelligence. Macao, China: International Joint
Conferences on Artificial Intelligence Organization,
2019: 4725-4731.
[15] BUEHRER G, WEIDE B W, SIVILOTTI P A G. Using
parse tree validation to prevent SQL injection
attacks[C]//Proceedings of the 5th International
Workshop on Software Engineering and Middleware.
Lisbon, Portugal: ACM, 2005: 106-113.
[16] EZUMALAI R, AGHILA G. Combinatorial approach
for preventing SQL injection attacks[C] //Proceedings
of the 2009 IEEE International Advance Computing
Conference. Patiala, India: IEEE, 2009: 1212-1217.
[17] 朱思猛,杜瑞颖,陈晶,等. 基于循环神经网络的
Web 应用防火墙加固方案[J].计算机工程,2022,48
(11): 120-126.
ZHU S M,DU R Y,CHEN J,et al. Web application
firewall reinforcement scheme based on recurrent
neural network[J]. Computer Engineering,2022,48
(11): 120-126. (in Chinese)
[18] CORONA I, ARIU D, GIACINTO G. HMM-Web: A
framework for the detection of attacks against web
applications[C]//Proceedings of the 2009 IEEE
International Conference on Communications. Dresden,
Germany: IEEE, 2009: 1-6.
[19] DEBABRATA K, SUVASINI P, SRIKANTH S.
SQLiGoT: Detecting SQL injection attacks using
graph of tokens and SVM[J]. Computers & Security,
2016, 60(206–225).
[20] MANOEL D J, EBECKEN N F F. A new WAF
architecture with machine learning for resource-
efficient use[J]. Computers & Security, 2021, 106.
[21] TRIPP O, WEISMAN O, GUY L. Finding your way in
the testing jungle: a learning approach to web security testing[C] //Proceedings of the 2013 International
Symposium on Software Testing and Analysis. Lugano,
Switzerland: ACM, 2013: 347-357
[22] APPELT D, NGUYEN C D, PANICHELLA A, et al. A
machine learning driven evolutionary approach for
testing
web
application
firewalls[J].
IEEE
Transactions on Reliability, 2018, 67(3), 733–757.
[23] DEMETRIO L, VALENZA A, COSTA G, et al.
WAF-A-MoLE: evading web application firewalls
through adversarial machine learning[C] //Proceedings
of the 35th Annual ACM Symposium on Applied
Computing. Brno, Czech Republic: ACM, 2020:
1745-1752.
[24] LV C, ZHANG L, ZENG F, et al. Adaptive random
testing for XSS vulnerability[C]//Proceedings of the
2019 26th Asia-Pacific Software Engineering
Conference. Putrajaya, Malaysia: IEEE, 2019: 63-69.
[25] AMOUEI M, REZVANI M, FATEH M. RAT:
Reinforcement-learning driven and adaptive testing for
vulnerability discovery in web application firewalls[J].
IEEE Transactions on Dependable and Secure
Computing, 2021.
[26] LIU F, JIANG J, LU Y, et al. The ethical security of
large language models: A systematic review[J].
Frontiers of Engineering Management, 2025, 12:
128-140.
[27] RADFORD A, WU J, CHILD R, et al. Language
models
are
unsupervised
multitask
learners
[EB/OL].[2025-1-3] OpenAI blog, 2019, 1(8): 9.
[28] ROHIT P, HETVI W, SNEHA R, et al. Generative
AI-Based Text Generation Methods Using Pre-Trained
GPT-2
Model
[EB/OL].
https://arxiv.org/abs/2404.01786
[29]
SAJID576.
[2025-01-03].
SQL Injection Dataset[EB/OL].
[2025-01-03]
https://www.kaggle.com/datasets/sajid576/sql-injectio
n-dataset, 2021.
[30] ISMAIL T. Xss-Payload-List [EB/OL]. [2025-01-03]
https://github.com/payloadbox/xss-payload-list, 2022.
[31] 何力,郑灶贤,项凤涛,等 . 基于深度学习的文本
分类技术研究进展[J].计算机工程,2021,47(1):1-11.
HE L,ZHENG Z X,XIANG F T,et al. Research
progress of text classification technology based on
deep learning[J].Computer Engineering,2021,47
(2): 1-11. (in Chinese)
[32] KINGMA D. P, BA J. Adam: A method for stochastic
optimization[C]//Proceedings of the 3rd International
Conference on Learning Representations. San Diego,
California, USA: ICLR, 2015. |