[1] Wu Z, Pi D, Chen J, et al. Rumor detection based on propagation graph neural network with attention mechanism[J]. Expert systems with applications, 2020, 158: 113595.
[2] Gao Y, Feng Y, Ji S, et al. HGNN+: General hypergraph neural networks[J]. IEEE Transactions on pattern analysis and machine intelligence, 2022, 45(3): 3181-3199.
[3] Sun X, Yin H, Liu B, et al. Structure learning via meta-hyperedge for dynamic rumor detection[J]. IEEE transactions on knowledge and data engineering, 2022, 35(9): 9128-9139.
[4] 彭竞杰,顾益军,张岚泽.融合用户传播倾向信息的超图网络谣言检测模型[J]. 数据分析与知识发现, 2024: 1.
Peng JJ, Gu YJ, Zhang LZ. A hypergraph network rumor detection model integrating user spreading tendency information [J]. Data analysis and knowledge discovery, 2024: 1
[5] Liu Y, Shen H, Shi L. A review of rumor detection techniques in social networks[J]. Journal of intelligent & fuzzy systems, 2023, 44(3): 3561-3578.
[6] 贺刚,吕学强,李卓,等.微博谣言识别研究[J].图书情报工作,2013,57(23):114-120.
He G, Lv XQ, Li Z, et al. Research on weibo rumor recognition [J]. Library and information work, 2013, 57 (23): 114-120
[7] Fayaz M, Khan A, Bilal M, et al. Machine learning for fake news classification with optimal feature selection[J]. Soft computing, 2022, 26(16): 7763-7771.
[8] Balakrishnan V, Zing H L, Laporte E. COVID-19 Infodemic–Understanding content features in detecting fake news using a machine learning approach[J]. Malaysian journal of computer science, 2023, 36(1): 1-13.
[9] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[10] Elman J L. Finding structure in time[J]. Cognitive science, 1990, 14(2): 179-211.
[11] 徐桂琼,何思桦,李卫民.融合动态传播网络与双重特征差异的社交网络谣言检测模型 [J]. 计算机应用研究, 2025, 42 (10).
Xu GQ, He SH, Li Weimin. Rumor detection model in social networks integrating dynamic propagation networks and dual feature differences [J]. Application research of computers, 2025, 42 (10).
[12] Luvembe A M, Li W, Li S, et al. Dual emotion based fake news detection: A deep attention-weight update approach[J]. Information Processing & Management, 2023, 60(4): 103354.
[13] Zhang K, Cao J, Pi D. A novel fine-grained rumor detection algorithm with attention mechanism[J]. Neurocomputing, 2024, 583: 127595.
[14] Li S, Wang Y, Huang H, et al. Study on the rumor detection of social media in disaster based on multi-feature fusion method[J]. Natural hazards, 2024, 120(4): 4011-4030.
[15] Luvembe A M, Li W, Li S, et al. CAF-ODNN: Complementary attention fusion with optimized deep neural network for multimodal fake news detection[J]. Information Processing & Management, 2024, 61(3): 103653.
[16] Xu S, Liu X, Ma K, et al. Rumor detection on social media using hierarchically aggregated feature via graph neural networks[J]. Applied intelligence, 2023, 53(3): 3136-3149.
[17] 马满福,杨鑫,李勇,等.基于图注意力网络的多谣言源识别模型[J/OL].计算机工程,2025,1-11.
Ma MF, Yang X, Li Y, et al. Multi rumor source recognition model based on graph attention network [J/OL]. Computer engineering, 2025, 1-11.
[18] 凤丽洲,刘馥榕,王友卫.基于图卷积网络和注意力机制的谣言检测方法[J].数据分析与知识发现,2024,8(04):125-136.
Feng LZ, Liu FR, Wang YW. Detecting Rumor Based on Graph Convolution Network and Attention Mechanism [J]. Data analysis and knowledge discovery, 2024,8(04):125-136.
[19] 曾智,赵书庆,刘欢,等.基于事件驱动的超图卷积网络的谣言检测方法[J].计算机研究与发展,2024,61(08):1982-1992.
Zeng Z, Zhao SQ, Liu H, et al. Rumor detection method based on event driven hypergraph convolutional network [J]. Computer research and development, 2024, 61 (08): 1982-1992
[20] 郑诚,李鹏飞.基于双超图神经网络特征融合的文本分类方法[J/OL].计算机工程,2025,1-10.
Zheng C, Li PF. Text classification method based on dual hypergraph neural network feature fusion [J/OL]. Computer engineering, 2025, 1-10
[21] Wu L, Wang D, Song K, et al. Dual-view hypergraph neural networks for attributed graph learning[J]. Knowledge-Based Systems, 2021, 227: 107185.
[22] 许小满,孙雨耕,杨山,等.超图理论及其应用[J].电子学报,1994,(08):65-72.
Xu XM, Sun YG, Yang S, et al. Hypergraph Theory and Its Applications [J]. Acta Sinica, 1994, (08): 65-72
[23] 李瑾颉,吴联仁,齐佳音,等.微博话题流行度统计分析及其影响因素研究[J].情报科学,2017,35(07):138-141+148.
Li JJ, Wu LR, Qi JY, et al. Statistical Analysis of the Topic Popularity and Influencing Factors in Micro-blog Network [J]. Information science, 2017,35(07):138-141+148.
[24] Feng Y, You H, Zhang Z, et al. Hypergraph neural networks[C]//Proceedings of the AAAI conference on artificial intelligence. 2019, 33(01): 3558-3565.
[25] Wu Z, Pi D, Chen J, et al. Rumor detection based on propagation graph neural network with attention mechanism[J]. Expert systems with applications, 2020, 158: 113595.
[26] Chin D W K, Lim K H, Lee R K W. Rumor Graph Xplainer: Do structures really matter in rumor detection[J]. IEEE Transactions on computational social systems, 2024.
[27] Nickerson R S. Confirmation bias: A ubiquitous phenomenon in many guises[J]. Review of general psychology, 1998, 2(2): 175-220.
[28] 刘铭,郑子豪,秦兵,等.基于篇章级事件表示的文本相关度计算方法.中国科学:信息科学,2020,50: 1033–1054
Liu M, Zheng ZH, Qin B, etal. Text correlation calculation based on passage-level event representation . Scientia sinica (informationis) [J]. 2020,50: 1033–1054
[29] Bahdanau D. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.
[30] Ma J, Gao W, Wei Z Y, et al. Detect rumors using time series of social context information on microblogging websites[C]//The 24th ACM International on conference on information and knowledge management, 2015: 1751-1754.
[31] Devlin J, Chang M W, Lee K, Toutanova K. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[32] Bai N, Meng F, Rui X, et al. Rumor detection based on graph convolutional neural net[J]. IEEE Access, 2021, 9:21686-21693.
[33] Singh J P, Kumar A, Rana N P, et al. Attention-based LSTM network for rumor veracity estimation of tweets[J]. Information systems frontiers, 2022, 24: 459-474
[34] Wan P, Wang X, Pang G, et al. A novel rumor detection with multi-objective loss functions in online social networks[J]. Expert systems with applications, 2023, 213: 119239.
[35] Zhao S, Ji S, Lv J, et al. Propagation tree says: dynamic evolution characteristics learning approach for rumor detection[J]. International Journal of Machine Learning and Cybernetics, 2025, 16(3): 1589-1605.
|