[1] CODD E F. A relational model of data for large shared data banks[J]. Communications of the ACM, 1970, 13(6): 377–387.
[2] CHAMBERLIN D D, BOYCE R F. SEQUEL: A structured English query language[C]//Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on data description, access and control. 1974: 249–264.
[3] 刘译璟.基于自然语言处理和深度学习的NL2SQL技术及其在BI增强分析中的应用[J].中国信息化,2019,00(11)62-67.doi : 10.3969/j.issn.1672-5158.2019.11.032
LIU Yijing. NL2SQL Technology Based on Natural Language Processing and Deep Learning and Its Application in BI-Enha nced Analysis[J]. China Informatization, 2019, 00(11): 62-67. doi: 10.3969/j.issn.1672-5158.2019.11.032
[4] LUO Y, WANG W, LIN X, et al. SPARK2: Top-k keyword query in relational databases[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(12): 1763–1780.
[5] SAHA D, FLORATOU A, SANKARANARAYANAN K, et al. ATHENA: an ontology-driven system for natural language querying over relational data stores[J]. VLDB Endowment, 2016, 9(12):1209-1220.
[6] LI F, JAGADISH H V. NaLIR: an interactive natural language interface for querying relational databases[C]// Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York, USA: Association for Computing Machinery, 2014: 709–712.
[7] SCHOLAK T, SCHUCHER N, BAHDANAU D. PICARD: parsing incrementally for constrained auto-regressive decoding from language models[C]//In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Online and Punta Cana, Dominican Republic: Association for Computational Linguistics, 2021:9895–9901.
[8] XU K, WANG Y, WANG Y, et al. SeaD: end-to-end text-to-sql generation with schema-aware denoising[C]//Findings of the Association for Computational Linguistics: NAACL 2022. Seattle, United States: Association for Computational Linguistics, 2022: 1845-1853.
[9] 王秋月.基于知识增强的NL2SQL方法[J]. 智能计算机与应用, 2022, 12(07): 1-7. doi: 10.3969/j.issn.2095-2163.2022.07.002
WANG Qiuyue. Knowledge-enhanced NL2SQL Method[J]. Intelligent Computer and Applications, 2022, 12(07): 1-7. doi: 10.3969/j.issn.2095-2163.2022.07.002
[10] FU H, LIU C, WU B, et al. CatSQL: Towards real world natural language to SQL applications[J]. Proc. VLDB Endow., 2023, 16(6): 1534–1547.
[11] GAO D, WANG H, LI Y, et al. Text-to-SQL empowered by large language models: A benchmark evaluation[J]. Proc. VLDB Endow., 2024, 17(5): 1132–1145.
[12] TAN Z, LIU X, SHU Q, et al. Enhancing text-to-SQL capabilities of large language models through tailored promptings[C]//In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation. Torino, Italia: ELRA and ICCL, 2024: 6091–6109.
[13] REN T, FAN Y, HE Z, et al. PURPLE: Making a large language model a better SQL writer[C]//2024 IEEE 40th International Conference on Data Engineering. Utrecht, Netherlands: IEEE, 2024: 15–28.
[14] LIU A, HU X, WEN L, et al. A comprehensive evaluation of ChatGPT’s zero-shot text-to-SQL capability[EB/OL]. [2025-07-30]. https://arxiv.org/abs/2303.13547.
[15] CHOWDHERY A, NARANG S, DEVLIN J, et al. PaLM: scaling language modeling with pathways[J]. J. Mach. Learn. Res., 2023, 24(1): 11324 - 11436.
[16] RAJKUMAR N, LI R, BAHDANAU D. Evaluating the text-to-SQL capabilities of large language models[EB/OL]. [2025-07-30]. https://arxiv.org/abs/2204.00498.
[17] 刘雪颖. 基于大型语言模型的检索增强生成综述[J]. 计算机工程与应用, 2025, 61(13): 1–25. DOI: 10.3778/j.issn.1002-8331.2410-0088.
Liu Xueying. Survey on retrieval-augmented generation based on large language models[J]. Computer Engineering and Applications, 2025, 61(13): 1–25. DOI: 10.3778/j.issn.1002-8331.2410-0088.
[18] YU T, ZHANG R, YANG K, et al. Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task [C]//In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for Computational Linguistics, 2018:3911–3921.
[19] Wang S, Ding L, Zhan Y, Luo Y, Liu S, Ding W. Fuzzy-Assisted Contrastive Decoding: Improving Code Generation of Large Language Models[J]. IEEE Transactions on Fuzzy Systems, 2025.
[20] He K, Liu M, Wang C, Li Z, Wang Y, Peng X, Zheng Z. AdaDec: Uncertainty-Guided Adaptive Decoding for LLM-based Code Generation[J]. arXiv preprint arXiv:2506.08980, 2025.
[21] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in Neural Information Processing Systems, 2020, 33: 1877–1901.
[22] ACHIAM O J, ADLER S, AGARWAL S, et al. GPT-4 technical report[EB/OL]. [2025-07-30]. https://cdn.openai. com/papers/gpt-4.pdf.
[23] FAN Y, HE Z, REN T, et al. MetaSQL: A generate-then-rank framework for natural language to SQL translation[C]//2024 IEEE 40th International Conference on Data Engineering. Utrecht, Netherlands: IEEE, 2024: 1765–1778.
[24] TAI C Y, CHEN Z, ZHANG T, et al. Exploring chain of thought style prompting for text-to-SQL[C]//In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Singapore: Association for Computational Linguistics, 2023: 5376–5393.
[25] ARORA A, BHAISAHEB S, NIGAM H, et al. Adapt and decompose: efficient generalization of text-to-SQL via domain adapted least-to-most prompting[C]//Proceedings of the 1st GenBench Workshop on (Benchmarking) Generalisation in NLP. Singapore: Association for Computational Linguistics, 2023: 25–47.
[26] GAO Y, XIONG Y, GAO X, et al. Retrieval-augmented generation for large language models: a survey[EB/OL]. [2025-07-30]. https://arxiv.org/abs/2312.10997.
[27] Xiao S, Liu Z, Zhang P, et al. C-Pack: Packed resources for general chinese embeddings[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. Washington DC, USA: Association for Computing Machinery, 2024: 641–649.
[28] Enevoldsen, Kenneth C. et al. MMTEB: massive multilingual text embedding benchmark[EB/OL]. [2025-07-30]. https://arxiv.org/abs/2502.13595.
[29] Tarjan, Robert Endre. Data structures and network algorithms[M]. USA: Society for Industrial and Applied Mathematics, 1983.
[30] LI Z, WANG X, ZHAO J, et al. PET-SQL: a prompt-enhanced two-round refinement of text-to-SQL with cross-consistency[EB/OL]. [2025-07-39]. https://arxi v.org/abs/2403.09732
[31] TALAEI S, POURREZA M, CHANG Y C, et al. CHESS: contextual harnessing for efficient SQL synthesis[EB/OL]. [2025-07-30]. https://arxiv.org/abs/2405.16755.
[32] DB-GPT VLDB 2024 Xue S, Qi D, Jiang C, et al. Demonstration of DB-GPT: Next Generation Data Interaction System Empowered by Large Language Models[J].
[33] Xue S, Qi D, Jiang C, et al. Demonstration of DB-GPT: next generation Data interaction system empowered by large language models[EB/OL]. [2025-07-30]. https://arxi v.org/abs/2404.10209.
[34] DIN-SQL NeurIPS 2023 Pourreza M, Rafiei D. Din-sql: Decomposed in-context learning of text-to-sql with self-correction[J]. Advances in Neural Information Processing Systems, 2023, 36: 36339-36348.
|