[1]ZHANG S, RAN N. Fine-grained and coarse-grained contrastive learning for text classification[J]. Neurocomputing, 2024, 596: 128084.
[2]GAO X, JIA X, LI Y, et al. Dynamic scenario representation learning for motion forecasting with heterogeneous graph convolutional recurrent networks[EB/OL]. IEEE Robotics and Automation Letters, 2023, 8(5): 2946-2953.
[3]LIANG M, YANG B, Hu R, et al. Learning lane graph representations for motion forecasting[C]//European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 541-556.
[4]SALZMANN T, IVANOVIC B, CHAKRAVARTY P, et al. Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data[C]//European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 683-700.
[5]ZHANG L, LI P, LIU S, et al. Simpl: A simple and efficient multi-agent motion prediction baseline for autonomous driving[J]. IEEE Robotics and Automation Letters, 2024, 9(4): 3767-3774.
[6]CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//European conference on computer vision. Cham: Springer International Publishing, 2020: 213-229.
[7]REN S, HE K, GIESSICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28.
[8]Ye M, Xu J, Xu X, et al. Dcms: Motion forecasting with dual consistency and multi-pseudo-target supervision[J]. arXiv preprint arXiv:2204.05859, 2022, 2(6): 8.
[9]ZHOU Y, SHAO H, WANG L, et al. Smartrefine: A scenario-adaptive refinement framework for efficient motion prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 15281-15290.
[10]NAYAKANTI N, AI-RFOU R, ZHOU A, et al. Wayformer: Motion forecasting via simple & efficient attention networks[J]. IEEE International Conference on Robotics and Automation (ICRA). 2023. 2980–2987.
[11]Yi T, German O V. A hybrid agent-centric and scene-centric approach for multi-agent trajectory prediction[J]. 2024.
[12]LIN C F, ULSOY A G, LEBLANC D J. Vehicle dynamics and external disturbance estimation for vehicle path prediction[J]. IEEE Transactions on Control Systems Technology, 2000, 8(3): 508-518.
[13]乔少杰, 韩楠, 朱新文, 等. 基于卡尔曼滤波的动态轨迹预测算法[J]. 电子学报,2018, 46 (2): 418-423.
QIAO S J, HAN N, ZHU X W, et al. Dynamic trajectory prediction algorithm based on Kalman filter[J]. Acta Electronica Sinica, 2018, 46(2): 418-423. (in Chinese)
[14]高建, 毛莺池, 李志涛. 基于高斯混合-时间序列模型的轨迹预测[J]. 计算机应用, 2019, 39 (8): 2261-2270.
GAO J, MAO Y C, LI Z T. Trajectory prediction based on Gauss mixture time series model[J]. Journal of Computer Applications, 2019, 39(8): 2261-2270. (in Chinese)
[15]孟宪伟, 唐进君, 王喆. 考虑换道意图的LSTM-AdaBoost 车辆轨迹预测模型[J]. 计算机工程与应用,2022,58(13): 280-287.
MENG X W, TANG J J, WANG Z. Trajectory prediction of vehicles based on LSTM-AdaBoost model considering lane changing intention[J]. Computer Engineering and Applications, 2022, 58(13): 280-287. (in Chinese)
[16]刘建敏, 林晖, 汪晓丁. 基于图注意力机制的无地图场景轨迹预测方法[J]. 计算机工程, 2024, 50(7): 144-153.
LIU J M, LIN H, WANG X D. Graph Attention Mechanism-based Method for Trajectory Prediction in Map-Free Scenes[J]. Computer Engineering, 2024, 50(7): 144-153. (in Chinese)
[17]MIN K, KIM D, PARK J, et al. RNN-based path prediction of obstacle vehicles with deep ensemble[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 10252-10256.
[18]黄玲, 崔躜, 游峰, 等. 适用于多车交互场景的车辆轨迹预测模型[J]. 吉林大学学报(工学版),2024,54(5):1188-1195.
HUANG L, CUI Z, YOU F, et al. Vehicle trajectory prediction model for multi-vehicle interaction scenario[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(5): 1188-1195. (in Chinese)
[19]SHENG Z H, XU Y W,XUE S B, et al. Graph-based spatial temporal convolutional network for vehicle trajectory prediction in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17654-17665.
[20]闫建红, 刘芝妍, 王震. 融合时空注意力机制的多尺度卷积车辆轨迹预测 [J/OL]. 计算机工程, 1-10[2024-08 22]. https://doi.org/10.19678/j.issn.1000-3428.0068767.
YAN J H, LIU Z Y, WANG Z. Vehicle Trajectory Prediction based on Spatial-Temporal Attention Mechanisms and Multi-Scale Convolutional Social Pooling[J/OL]. Computer Engineering, 1-10[2024-08-22].https://doi.org/10.19678/j.issn.1000 3428.0068767. (in Chinese)
[21]QI C R, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660
[22]AYDEMIR G, AKAN A K, GUNEY F. Adapt: Efficient multi-agent trajectory prediction with adaptation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 8295-8305.
[23]DONG Y, YUAN H, LIU H, et al. ProIn: Learning to predict trajectory based on progressive interactions for autonomous driving[J]. Neurocomputing, 2025: 130346.
[24]CHANG M F, LAMBERT J, SANGKLOY P, et al. Argoverse: 3d tracking and forecasting with rich maps[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 8748-8757.
[25]WILSON B, QI W, AGARWAL T, et al. Argoverse 2: Next generation datasets for self-driving perception and forecasting[J]. arXiv preprint arXiv:2301.00493, 2023.
[26]ZHOU Z, YE L, WANG J, et al. Hivt: Hierarchical vector transformer for multi-agent motion prediction[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 8823-8833.
[27]FENG C, ZHOU H, LIN H, et al. Macformer: Map-agent coupled transformer for real-time and robust trajectory prediction[J]. IEEE Robotics and Automation Letters, 2023, 8(10): 6795-6802.
[28]WANG J, MA Y, HUANG S, et al. A keypoint-based global association network for lane detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 1392-1401.
[29]WANG X, SU T, DA F, et al. Prophnet: Efficient agent-centric motion forecasting with anchor-informed proposals[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 21995-22003.
[30]LIU M, CHENG H, CHEN L, et al. Laformer: Trajectory prediction for autonomous driving with lane-aware scene constraints[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 2039-2049.
[31]KANG M, WANG S, ZHOU S, et al. Ffinet: Future feedback interaction network for motion forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(9): 12285-12296.
[32]XIN G, CHU D, LU L, et al. Multi-agent trajectory prediction with difficulty-guided feature enhancement network[J]. IEEE Robotics and Automation Letters, 2025.
[33]JIA X, WU P, CHEN L, et al. Hdgt: Heterogeneous driving graph transformer for multi-agent trajectory prediction via scene encoding[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(11): 13860-13875.
[34]ZHANG Z, LINIGER A, SAKARIDIS C, et al. Real-time motion prediction via heterogeneous polyline transformer with relative pose encoding[J]. Advances in Neural Information Processing Systems, 2023, 36: 57481-57499.
|