[1] COOK W J, CUNNINGHAM W H, PULLEYBLANK W
R,et al. Combinatorial optimization[M]. New York:John
Wiley&Sons, Inc., 2010.
[2] 刘振宏,蔡茂诚.组合最优化算法和复杂性[M].北京:清华
大学出版社, 1988.LIU Z H, CAI M C. Combinatorial
optimization algorithms and complexity[M].
Beijing:Tsinghua University Press, 1988.
[3] HOCHBA D S. Approximation algorithms for NP-hard
problems[J]. SIGACT News, 1997, 28(2):40-52.
[4] 王扬, 陈智斌, 吴兆蕊, 等. 强化学习求解组合最优化
问题的研究综述[J]. 计算机科学与探索, 2021, 16(02):
261-279.
[5] MAO H, SCHWARZKOPF M, VENKATAKRISHNAN S
B, et al. Learning scheduling algorithms for data
processing clusters[C]//Proceedings of the ACM Special
Interest Group on Data Communication, Beijing, Aug
19-23, 2019. New York:ACM, 2019:270-288.
[6] VAZIRANI V V. Approximation algorithms[M]. Berlin,
Heidelberg:Springer, 2013.
[7] KARIMI-MAMAGHAN M, MOHAMMADI M, MEYER
P, et al. Machine learning at the service of meta-heuristics
for solving combinatorial optimization problems:a
state-ofthe-art[J]. European Journal of Operational
Research, 2021,296(2):393-748.
[8] HELSGAUN K. An Extension of the
Lin-Kernighan-Helsgaun TSP Solver for Constrained
Traveling Salesman and Vehicle Routing Problems:
Technical report[J]. Roskilde: Roskilde University, 2017,
12: 966-980.
[9] KONSTANTAKOPOULOS G D, GAYIALIS S P,
KECHAGIAS E P. Vehicle routing problem and related
algorithms for logistics distribution: a literature review and
classification[J/OL]. Operational Research, 2022:
2033-2062. http://dx.doi.org/10.1007/s12351-020-00600-7.
DOI:10.1007/s12351-020-00600-7.
[10] OPTIMIZATION I G. Gurobi optimizer reference
manual[EB/OL].(2020-10-27). https://www.gurobi.com.
[11] HOPFIELD J J, TANK D W. Neural computation of
decisions in optimization problems[J]. Biological
Cybernetics,1985, 52(3):141-152.
[12] BELLO I, PHAM H, LE QuocV, et al. Neural
Combinatorial Optimization with Reinforcement
Learning[J]. arXiv: Artificial Intelligence,arXiv: Artificial
Intelligence, 2016.
[13] VINYALS O, FORTUNATO M, JAITLY N. Pointer
Networks[J]. arXiv: Machine Learning,arXiv: Machine
Learning, 2015.
[14] KOOL W, VAN HOOF H, GROMICHO J, et al. Deep
Policy Dynamic Programming for Vehicle Routing
Problems[M/OL]//Integration of Constraint Programming,
Artificial Intelligence, and Operations Research,Lecture
Notes in Computer Science. 2022: 190-213.
http://dx.doi.org/10.1007/978-3-031-08011-1_14.
DOI:10.1007/978-3-031-08011-1_14.
[15] ZHANG W, DIETTERICH T G. A reinforcement learning
approach to job-shop scheduling[C]//Proceedings of the
14th International Joint Conference on Artificial
Intelligence,Montreal, Aug 20-25, 1995. San
Francisco:Morgan Kaufmann Publishers Inc.,
1995:1114-1120.
[16] 刘全,翟建伟,章宗长,等.深度强化学习综述[J].计算机学
报, 2018, 41(1):1-27.LIU Q, ZHAI J W, ZHANG Z C, et
al. A survey on deep reinforcement learning[J]. Chinese
Journal of Computers,2018, 41(1):1-27.
[17] 郭田德,韩丛英,唐思琦.组合优化机器学习方法[M].北京:
科学出版社, 2019.GUO T D, HAN C Y, TANG S Q.
Machine learning methods for combinatorial
optimization[M]. Beijing:Science Press,2019.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention
is All you Need[J]. Neural Information Processing
Systems,Neural Information Processing Systems, 2017.
[19] WILLIAMS R J. Simple statistical gradient-following
algorithms for connectionist reinforcement learning[J/OL].
Machine Learning, 1992: 229-256.
http://dx.doi.org/10.1007/bf00992696.
DOI:10.1007/bf00992696.
[20] KWON Y D, CHOO J, KIM B, et al. POMO: Policy
Optimization with Multiple Optima for ReinforcementLearning[J]. Neural Information Processing
Systems,Neural Information Processing Systems, 2020.
[21] Towards Generalizable Neural Solvers for Vehicle Routing
Problems via Ensemble with Transferrable Local Policy[J].
2023.
[22] KIM M, PARK J, PARK J. Sym-NCO: Leveraging
Symmetricity for Neural Combinatorial Optimization[J].
2022.
[23] ZHOU J, WU Y, SONG W, et al. Towards
Omni-generalizable Neural Methods for Vehicle Routing
Problems[J]. 2023.
[24] KWON Y D, CHOO J, YOON I, et al. Matrix Encoding
Networks for Neural Combinatorial Optimization[J]. arXiv:
Learning,arXiv: Learning, 2021.
[25] KOOL W, HOOF H, WELLING M. Attention, Learn to
Solve Routing Problems![J]. arXiv: Machine
Learning,arXiv: Machine Learning, 2018.
[26] The Traveling salesman problem: a computational
study[J/OL]. Choice Reviews Online, 2007:
45-0928-45-0928.
http://dx.doi.org/10.5860/choice.45-0928.
DOI:10.5860/choice.45-0928.
[27] HELSGAUN K. An effective implementation of the
Lin–Kernighan traveling salesman heuristic[J/OL].
European Journal of Operational Research, 2000: 106-130.
http://dx.doi.org/10.1016/s0377-2217(99)00284-2.
DOI:10.1016/s0377-2217(99)00284-2.
|