[1] Xiao J, Ye H, He X, et al. Attentional factorization
machines: Learning the weight of feature interactions via
attention networks[J]. arXiv preprint arXiv:1708.04617,
2017.
learning
via
self-attentive
neural
networks[C]//Proceedings of the 28th ACM international
conference on information and knowledge management.
2019: 1161-1170.
[2] Rendle S, Freudenthaler C, Gantner Z, et al. BPR:
Bayesian personalized ranking from implicit feedback[J].
arXiv preprint arXiv:1205.2618, 2012.
[3] Pan J, Xu J, Ruiz A L, et al. Field-weighted factorization
machines for click-through rate prediction in display
advertising[C]//Proceedings of the 2018 world wide web
conference. 2018: 1349-1357.
[4] Sun Y, Pan J, Zhang A, et al. FM2: Field-matrixed
factorization machines for recommender systems[C]
//Proceedings of the web conference 2021. 2021:
2828-2837.
[5] Juan Y, Zhuang Y, Chin W S, et al. Field-aware
factorization
machines
for
CTR
prediction[C]
//Proceedings of the 10th ACM conference on
recommender systems. 2016: 43-50.
[6] Song W, Shi C, Xiao Z, et al. Autoint: Automatic feature
[7] Cheng Y, Xue Y. Looking at CTR Prediction Again: Is
Attention All You Need?[C]//Proceedings of the 44th
International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2021: 1279-1287.
[8] Wang R, Fu B, Fu G, et al. Deep & cross network for ad
click predictions[M]//Proceedings of the ADKDD'17.
2017: 1-7.
[9] Wang F, Gu H, Li D, et al. Towards deeper, lighter and
interpretable
cross network for ctr prediction[C]
//Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management. 2023:
2523-2533.
[10] Mao K, Zhu J, Su L, et al. FinalMLP: an enhanced
two-stream
MLP
model
for
CTR
prediction[C]//Proceedings of the AAAI Conference on
Artificial Intelligence. 2023, 37(4): 4552-4560.
[11] 王曙燕, 郭睿涵, 孙家泽. 基于图对比学习的MOOC推
荐方法[J].计算机工程,2023,49(1):57-64,72.WANG S Y, GUO R H, SUN J Z. Recommendation
method for MOOC based on graph contrastive learning[J].
Computer Engineering, 2023,49(1): 57-64,72. (in
Chinese)
[12] 顾嘉静, 杨丹, 聂铁铮, 寇月. 基于多视图融合跨层
对比学习的推荐算法[J]. 计算机工程, 2024, 50(1):
120- 128.
GU J J,YANG D,NIE T Z,KOU Y. Recommendation
Algorithm Based on Multi-view Fusion Cross-layer
Contrastive Learning[J]. Computer Engineering, 2024,
50(1):120-128. (in Chinese)
[13] 汤志康,武毓琦,李春英,汤庸. 基于知识图谱卷积网
络 的 学 习 资 源 推 荐 [J]. 计算机工
程,2024,50(09):153-160.
TANG A K, WU Y Q, LI C Y, TANG Y. Recommendation
of Learning Resource Based on Knowledge Graph
Convolutional Network[J]. Computer Engineering, 2024,
50(09): 153-160. (in Chinese)
[14] Wang R, Shivanna R, Cheng D, et al. Dcn v2: Improved
deep & cross network and practical lessons for web-scale
learning to rank systems[C]//Proceedings of the web
conference 2021. 2021: 1785-1797.
[15] Guo H, Tang R, Ye Y, et al. DeepFM: a
factorization-machine based neural network for CTR
prediction[J]. arXiv preprint arXiv:1703.04247, 2017.
[16] Guan F, Qian C, He F. A knowledge distillation-based
deep interaction compressed network for CTR
prediction[J]. Knowledge-Based Systems, 2023, 275:
110704.
[17] Zhang Y, Shi T, Feng F, et al. Reformulating CTR
Prediction: Learning Invariant Feature Interactions for
Recommendation[C]//Proceedings
of
the
46th
Interna-tional ACM SIGIR Conference on Research and
Development in Information Retrieval. 2023: 1386-1395.
[18] Du H, Li Y, Sun Y, et al. Srh-net: Stacked recurrent
hourglass network for stereo matching[J]. IEEE Robotics
and Automation Letters, 2021, 6(4): 8005-8012.
[19] Jun X, Xudong Z, Xinying X, et al. DRIN: Deep
Recurrent Interaction Network for click-through rate
prediction[J]. Information Sciences, 2022, 604: 210-225.
[20] Spirtes P L, Meek C, Richardson T S. Causal inference in
the presence of latent variables and selection bias[J].
arXiv preprint arXiv:1302.4983, 2013.
[21] Dou S, Zheng R, Wu T, et al. Decorrelate irrelevant,
purify relevant: Overcome textual spurious correlations
from a feature perspective[J]. arXiv preprint
arXiv:2202.08048, 2022.
[22] Zhang X, Cui P, Xu R, et al. Deep stable learning for
out-of-distribution generalization[C]//Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021: 5372-5382.
[23] Li Y, Chen H, Tan J, et al. Causal factorization machine
for robust recommendation[C]//Proceedings of the 22nd
ACM/IEEE Joint Conference on Digital Libraries. 2022:
1-9.
[24] Richardson M, Dominowska E, Ragno R. Predicting
clicks: estimating the click-through rate for new ads[C]//
Proceedings of the 16th international conference on World
Wide Web. 2007: 521-530.
[25] Rendle S. Factorization machines[C]//2010 IEEE
International conference on data mining. IEEE, 2010:
995-1000.
[26] Xiao J, Ye H, He X, et al. Attentional factorization
machines: Learning the weight of feature interactions via
attention networks[J]. arXiv preprint arXiv:1708.04617,
2017.
[27] Blondel M, Fujino A, Ueda N, et al. Higher-order
factorization machines[J]. Advances in neural information
processing systems, 2016, 29.
[28] He X, Chua T S. Neural factorization machines for sparse
predictive
analytics[C]//Proceedings
of
the
40th
International ACM SIGIR conference on Research and
Development in Information Retrieval. 2017: 355-364.
user
[29] Qu Y, Cai H, Ren K, et al. Product-based neural networks
for
response prediction[C]//2016 IEEE 16th
international conference on data mining (ICDM). IEEE,
2016: 1149-1154.
[30] Xu E, Yu Z, Guo B, et al. Core interest network for
click-through rate prediction[J]. ACM Transactions on
Knowledge Discovery from Data (TKDD), 2021, 15(2):
1-16.
[31] Cheng W, Shen Y, Huang L. Adaptive factorization
network: Learning adaptive-order feature interactions[C]
//Proceedings of the AAAI Conference on Artificial
Intelligence. 2020, 34(04): 3609-3616.
[32] Lian J, Zhou X, Zhang F, et al. xdeepfm: Combining
explicit and implicit feature interactions for recommender
systems[C]//Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data
mining. 2018: 1754-1763.
[33] Wang Z, She Q, Zhang J. Masknet: Introducing
feature-wise multiplication to CTR ranking models by
instance-guided
mask[J].
arXiv:2102.07619, 2021.
arXiv
preprint
[34] Zhu J, Jia Q, Cai G, et al. Final: Factorized interaction
layer for ctr prediction[C]//Proceedings of the 46th
International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2023: 2006-2010.
[35] Si Z, Sun Z, Zhang X, et al. Enhancing recommendation
with search data in a causal learning manner[J]. ACM
Transactions on Information Systems, 2023, 41(4): 1-31.
[36] Li Q, Wang X, Wang Z, et al. Be causal: De-biasing social
network confounding in recommendation[J]. ACM
Transactions on Knowledge Discovery from Data, 2023,
17(1): 1-23. |