[1] 江波,屈若锟,李彦冬,等.基于深度学习的无人机航拍目标检测研究综述[J].航空学报,2021,42(04):137-151. Jiang B, Qu R K, Li Y D, et al. Object detection in UAV imagery based on deep learning: Review [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524519.
[2] Redmon J. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[3] Jocher, G. (2020). YOLOv5 by Ultralytics (Version 7.0) [Computer software]. https:// doi.org/10.5281/zenodo.3908559.
[4] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arxiv preprint arxiv:2004.10934, 2020.
[5] Ge Z. Yolox: Exceeding yolo series in 2021[J]. arxiv preprint arxiv:2107.08430, 2021.
[6] 王国明,贾代旺.基于YOLOv8的小目标检测模型的优化[J/OL].计算机工程,1-10[2025-02-12].https://doi.org/10.19678/j.issn.1000-3428.0070027.
Wang G M, Jia D W. The Optimization of Small Object Detection Model Based on YOLOv8 [J/OL]. Computer Engineering, 1-10 [2025-02-12].https://doi.org/10.19678/j.issn.1000-3428.0070027. Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]// Proceedings of the European conference on computer vision (ECCV). 2018: 3-19
[7] Li Y, Fan Q, Huang H, et al. A modified YOLOv8 detection network for UAV aerial image recognition[J]. Drones, 2023, 7(5): 304.
[8] Tan M, Pang R, Le Q V. Efficientdet: Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 10781-10790.
[9] Wang G, Chen Y, An P, et al. UAV-YOLOv8: A small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190.
[10] Tong Z, Chen Y, Xu Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arxiv preprint arxiv:2301.10051, 2023.
[11] 李子轩,赵志刚,张泽宇,等.基于FNB-YOLOv5的钢筋网绑扎点目标检测[J/OL].上海交通大学学报,1-24[2025-01-13]. https://d oi.org/10.16183/j.cnki.jsjtu.2024.121. Li Z X, Zhao Z G, Zhang Z Y, et al. Object Detection of Steel Mesh Binding Point Using FNB-YOLOv5[J/OL]. Journal of Shanghai Jiaotong University, 1-24[2025-01-13]. https:// doi.org/10.16183/j.cnki.jsjtu.2024.121.
[12] Sun Y, Lan Z, Sun Y, et al. Ldstd: low-altitude drone aerial small target detector[J]. The Journal of Supercomputing, 2025, 81(2): 414.
[13] 廖宁生,曹天秀,刘科言,等.复合特征与多尺度融合的无人机小目标检测算法[J/OL].计算机工程与应用,1-10[2025-01-18]. http://cnki. wenx.top/kcms/detail/11.2127.TP.20241023.1616.006.html.
Liao N S, Cao T X, Liu K Y, er al, Small Target Detection Algorithm for UAV Based on Composite Feature and Multi-Scale Fusion[J/OL]. Computer Engineering and Applications,1-10[2025-01-18].http://cnki.wenx.top/kcms/detail/11.2127.TP.20241023.1616.006.html.
[14] Zhang X, Liu C, Yang D, et al. RFAConv: Innovating spatial attention and standard convolutional operation[J]. arxiv preprint arxiv:2304.03198, 2023.
[15] Sunkara R, Luo T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects[C]//Joint European conference on machine learning and knowledge discovery in databases. Cham: Springer Nature Switzerland, 2022: 443-45
[16] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 13713-13722.
[17] Cui Y, Ren W, Knoll A. Omni-Kernel Network for Image Restoration[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(2): 1426-1434..
[18] Zhang H, Wang Y, Dayoub F, et al. Varifocalnet: An iou-aware dense object detector[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 8514-8523.
[19] Yang Y, Li M, Meng B, et al. Rethinking the Aligned and Misaligned Features in Onestage Object Detection[J]. arxiv preprint arxiv, 2021, 2108.
[20] Howard A G. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arxiv preprint arxiv:1704.04861, 2017.
[21] Jocher, G., Qiu, J., & Chaurasia, A. (2023). Ultralytics YOLO (Version 8.0.0) [Computer software]. https://github.com/ultralytics/ultralytics
[22] Ouyang D, He S, Zhang G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1-5.
[23] Yu J, Jiang Y, Wang Z, et al. Unitbox: An advanced object detection network[C]// Proceedings of the 24th ACM international conference on Multimedia. 2016: 516-520.
[24] Zheng Z, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI conference on artificial intelligence. 2020, 34(07): 12993-13000.
[25] Siliang M, Yong X. Mpdiou: A loss for efficient and accurate bounding box regression. arxiv 2023[J]. arxiv preprint arxiv:2307.07662.
[26] Yu Z, Huang H, Chen W, et al. Yolo-facev2: A scale and occlusion aware face detector[J]. Pattern Recognition, 2024, 155: 110714.
[27] Du D, Zhu P, Wen L, et al. VisDrone-DET2019: The vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF international conference on computer vision workshops. 2019: 0-0.
[28] **a G S, Bai X, Ding J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 3974-3983.
[29] Yang G, Lei J, Zhu Z, et al. AFPN: Asymptotic feature pyramid network for object detection[C]//2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2023: 2184-2189.
[30] [J/OL].电讯技术,1-11[2025-01-13]. https://doi.org/10.20079/j.i张博文,薛波.基于多尺度特征的无人机目标识别算法ssn.1001-893x.240527001.
Zhang B W, Xue B. UAV Target Recognition Algorithm Based on Multi-scale Features[J/OL]. Telecommunication Engineering, 1-11[2025-01 -13].https://doi.org/10.20079/j.issn.1001-893x.240527001.
[31] Lyu C, Zhang W, Huang H, et al. Rtmdet: An empirical study of designing real-time object detectors[J]. arxiv preprint arxiv:2212.07784, 2022.
[32] Yang C, Huang Z, Wang N. QueryDet: Cascaded sparse query for accelerating high-resolution small object detection[C]// Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition. 2022: 13668-13677.
[33] Lin T Y, Maire M, Belongie S, et al. Microsoft coco: Common objects in context[C]//Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer International Publishing, 2014: 740-755.
[34] Wang J, Yang W, Guo H, et al. Tiny object detection in aerial images[C]//2020 25th international conference on pattern recognition (ICPR). IEEE, 2021: 3791-3798. |