[1] KAREEM M, TAREK H. Review of image-based analysis and
applications in construction [J]. Automation in Construction,
2021,122:103516.
[2] 韩晓健,赵志成.基于计算机视觉技术的结构表面裂缝检测方法研究
[J]. 建筑结构学报, 2018(S1):418-428. (HAN X J, ZHAO Z C,
Structural surface crack detection method based on computer visiontechnology[J]. Journal of Building Structures, 2018(S1):418-428)
[3] 苑玮琦,薛丹.基于机器视觉的隧道衬砌裂缝检测算法综述[J].仪器仪
表学报,2017,38(12):3100-3111. (YUAN W Q, XUE D. Review of
tunnel lining crack detection algorithms based on machine vision[J].
Chinese Journal of Scientific Instrument, 2017, 38(12): 3100-3111)
[4] 孙晓贺,施成华,刘凌晖,等.基于改进的种子填充算法的混凝土裂缝图
像识别系统[J]. 华 南 理 工 大 学 学 报 ( 自然科学
版),2022,50(05):127-136+146. (SUN X H, SHI C H, LIU L H, et al.
Concrete crack image recognition system based on improved seed
filling algorithm [J]. Journal of South China University of Technology
(Natural Science Edition), 2022, 50 (05): 127-136+146)
[5] 周湘君.基于图像识别的混凝土表观质量的评定方法初探[D].武汉:
武汉理工大学,2005 (ZHOU X J. The initial study of concrete apparent
quality evaluation based on Image Recognition[D].Wuhan: Wuhan
University of Technology,2005)
[6] 初秀民,严新平,陈先桥.路面破损图像二值化方法研究[J].计算机工程
与应用,2008,44(28):161-165. (CHU X M, YAN X P, CHEN X Q. Study
of pavement surface distress image binarization[J]. Computer
Engineering and Applications, 2008, 44(28): 161-165)
[7] 肖原. 基于 CNN 的混凝土表面损伤识别系统的设计与实现[D].上
海:华东师范大学,2022. ( XIAO Y. Design and Implementation of
Concrete Surface Damage Identification System Based on the CNN [D].
Shanghai: East China Normal University, 2022)
[8] Mohammadi, Abbas, SeyedeZahra Golazad, and Abbas Rashidi. 'A
Review of Trends and Practices in using Visual Data for
Construction-Related Machine Learning Models[J], Proceedings -
Winter Simulation Conference, 2024: 678-689.
[9] M. Coenen. Computer Vision as Key to an Automated Concrete
Construction[C],41st International Symposium on Automation and
Robotics in Construction (ISARC),2024
[10] Sarkar K., Shiuly A., Dhal K.G. Revolutionizing concrete analysis: An
in-depth survey of AI-powered insights with image-centric approaches
on comprehensive quality control, advanced crack detection and
concrete property exploration[J] Construction and Building Materials
2024,411:134212
[11] 聂鼎,安雪晖.基于图像处理的净浆扩展度测量工具开发[J].清华大学
学报:自然科学版,2016, 56(12):1249-1255. (NIE D, AN X H.
Mini-slump flow measurement tool based on self phase image
processing[J]. Journal of Tsinghua University(Science and Technology),
2016, 56(12): 1249-1255)
[12] Coenen Max , Vogel Christian, Schack Tobias , et al, Deep Concrete
Flow: Deep learning based characterisation of fresh concrete properties
from open-channel flow using spatio-temporal flow fields, Construction
and Building Materials 2024,411:134809
[13] Idrees S., Nugraha J. A., Tahir S., et al, Automatic concrete slump
prediction of concrete batching plant by deep learning[J]. Developments
in the Built Environment, 2024,18:100474
[14] Ding Z. and An X., Deep Learning Approach for Estimating Workability
of Self-Compacting Concrete from Mixing Image Sequences[J].
Advances in Materials Science and Engineering, 2018:6387930
[15] REBECCA N, BRANKO G. Methodology for diagnosing crack patterns
in masonry structures using photogrammetry and distinct element
modeling [J]. Engineering Structures, 2019,181:519-528.
[16] SHAN B, ZHENG S, OU J. A stereovision-based crack width detection
approach for concrete surface assessment [J]. KSCE J Civ Eng,
2016,20:803–812.
[17] 中华人民共和国交通部. JTG 5120-2021公路桥涵养护规范[S]. 北京:
人民交通出版社, 2004. (Ministry of Communications of the People's
Republic of China. JTG H11—2004 Code for maintenance of highway
bridges and culvers [S]. Beijing: China Communications Press, 2004 )
[18] 钟新谷,彭雄,沈明燕.基于无人飞机成像的桥梁裂缝宽度识别可行性
研究[J].土木工程学报,2019,52(04):52-61. (ZHONG X G, PENG X,
SHEN M Y. Study on the feasibility of identifying concrete crack width
with images acquired by unmanned aerial vehicles [J]. China Civil
Engineering Journal, 2019, 52 (04): 52-61)
[19] SPENCER F B, HOSKERE V, NARAZAKI Y. Advances in Computer
Vision-Based Civil Infrastructure Inspection and Monitoring [J].
Engineering,2019, 5(2):199-222.
[20] CHRISTIAN K, KRISTINA G, VARUN K, et al. A review on computer
vision based defect detection and condition assessment of concrete and
asphalt civil infrastructure [J]. Advanced Engineering Informatics,
2015,29(2):196-210.
[21] 吴乾德.基于数字图像处理的混凝土桥梁损伤识别方法研究[D].南
京:东南大学,2021 (WU Q D. Research on Damage Identification
Method of Concrete Bridge Based on Digital Image [D]. Nanjing:
Southeast University, 2021 )
[22] 李曙光,陈改新,鲁一晖.基于数字图像处理的混凝土微裂纹定量分析
技术[J].建筑材料学报,2013,16(06):1072-1077. (LI S G, CHEN G X,
LU Y H. Automatic Quantitative Analysis of Microcracks in Concrete
Based on Digital Image Processing Techniques [J]. Journal of Building
Materials, 2013, 16 (06): 1072-1077)
[23] 李文生,张菁,卓力,等.基于 Transformer 的视觉分割技术进展[J/OL].
计算机学报,1-21[2024-10-29]. (LI W S, ZHANG Q, ZHUO L, et al.
Overview of Transformer-Based Visual Segmentation Techniques[J/OL].
Chinese Journal of Computers, 1-21[2024-10-29)
[24] 罗希平,田捷,诸葛婴,等.图像分割方法综述[J].模式识别与人工智
能,1999,12(03):300-312. (LUO X P, TIAN J, ZHU G Y, et al. A survey
on image segmentation methods[J]. Pattern Recognition and Artificial
Intelligence,1999,12(03):300-312)
[25] AMMOUCHE A,BREYSSE D,HORNAIN H, et al. A new image
analysis technique for the quantitative assessment of microcracks in
cement-based
materials[J].Cement
2000,30(1):25-35.
and
Concrete
Research,
[26] LITOROWICZ A. Identification and quantification of cracks in concrete
by optical fluorescent microscopy[J].Cement and Concrete
Research,2006,36(8):1508-1515.
[27] 李曙光,陈改新,鲁一晖.基于数字图像处理的混凝土微裂纹定量分析
技术[J].建筑材料学报,2013,16(06):1072-1077. (LI S G, CHEN G X,
LU Y H. Automatic Quantitative Analysis of Microcracks in Concrete
Based on Digital Image Processing Techniques [J]. Journal of Building
Materials, 2013, 16 (06): 1072-1077)
[28] 刘清元,谈桥.基于图像处理的混凝土裂缝的检测[J].武汉理工大学学
报,2005(04):69-71. (LIU Q Y, TAN Q. Concrete Crack Detection Based
on Image Processing [J]. Journal of Wuhan University of Technology,
2005 (04): 69-71)
[29] ABDULLAH E, EMRAH D. Histogram-based global thresholding
method for image binarization [J]. Optik, 2024,306:171814.
[30] 杨松,邵龙潭,郭晓霞,等.基于骨架和分形的混凝土裂缝图像识别算法
[J].仪器仪表学报,2012,33(08):1850-1855. (YANG S, SHAO L T, GUO
X X, et al. Skeleton and fractal law based image recognition algorithm
for concrete crack [J]. Chinese Journal of Scientific Instrument, 2012,
33 (08): 1850-1855.)
[31] 荣婧,潘玉利.基于图像的水泥路面裂缝识别方法及应用[J].北京邮电
大学学报,2012,35(06):121-124. (RONG J, PAN Y L. Image Based
Crack Detection Algorithm withApplication to Cement Concrete
Pavement [J]. Journal of Beijing University of Posts and
Telecommunications, 2012, 35 (06): 121-124)
[32] 刘学增,叶康.隧道衬砌裂缝的远距离图像测量技术[J].同济大学学报
(自然科学版),2012,40(06):829-836. (LIU X Z, YE K. A Long-distance
Image Measuring Technique for Crack on Tunnel Lining [J]. Journal of
Tongji University (Natural Science Edition), 2012, 40 (06): 829-836)
[33] 邵将. 基于机器视觉的混凝土桥梁裂纹自动检测方法研究[D].湖南:
湖南科技大学,2020. (SHAO J. Concrete Bridge Cracks Automatic
Detection Method Research Based on Machine Vision [D]. Hunan:
Hunan University of Science and Technology, 2020)
[34] 林海涛,王皓冉,李永龙,等.水下非均匀光照场景下的混凝土图像增强
方法[J].清华大学学报(自然科学版),2023,63(07):1144-1152.( LIN H T,
WANG H R, LI Y L, et al. Concrete image enhancement method for
underwater uneven illumination scenes[J]. Journal of Tsinghua
University (Science and Technology), 2023, 63 (07): 1144-1152)
[35] 谢文高,张怡孝,刘爱荣,等.基于水下机器人与数字图像技术的混凝土
结构表面裂缝检测方法[J].工程力学,2022,39(S1):64-70. (XIE W G,
ZHANG Y X, LIU A R, et al. Method for Concrete Surface Cracking
Detection Based on ROV and Digital Image Technology [J].
Engineering Mechanics, 2022, 39 (S1): 64-70)
[36] 周颖,刘彤.基于计算机视觉的混凝土裂缝识别[J].同济大学学报(自
然科学版),2019,47(09):1277-1285. (ZHOU Y, LIU T. Computer
Vision-Based Crack Detection and Measurement on Concrete Structure
[J]. Journal of Tongji University (Natural Science Edition), 2019, 47
(09): 1277-1285)
[37] SANDRA P, GABRIEL R, EHSAN R A, et al. Enhancing concrete
defect segmentation using multimodal data and Siamese Neural
Networks[J]. Automation in Construction, 2024,166: 105594.
[38] 刘春,艾克然木·艾克拜尔,蔡天池.面向建筑健康监测的无人机自主巡
检 与 裂 缝 识 别 [J]. 同 济 大 学 学 报 ( 自然科学
版),2022,50(07):921-932+918. (LIU C, AIKERANMU・AIKEBAIER,
CAI T C. UAV Autonomous Inspection and Crack Detection Towards
Building Health Monitoring [J]. Journal of Tongji University (Natural
Science Edition), 2022, 50 (07): 921-932+918)
[39] ASHISH G, KAMAL K, RAJUL J, et al. A novel approach for industrial
concrete defect identification based on image processing and deep
convolutional neural networks[J]. Case Studies in Construction
Materials, 2023,19:e02392.
[40] 丁威,俞珂,舒江鹏.基于深度学习和无人机的混凝土结构裂缝检测方
法[J].土木工程学报,2021,54(S1):1-12. (DING W, YU K, SHU J P.
Method for detecting cracks in concrete structures based on deep
learning and UAV [J]. China Civil Engineering Journal, 2021, 54 (S1):
1-12 ))
[41] 陈金桥. 基于无人机图像的混凝土桥梁表观病害识别研究[D].南京:
东南大学, 2022. (CHEN J Q. Research on Recognition of Apparent
Diseases of Concrete Bridges Based on UAV Images [D]. Nanjing:
Southeast University, 2022)
[42] [1]杨萍,张汐.改进 DeepLabv3+的道路表面裂缝检测方法[J/OL].计算
机工程, 1-10, 2025-04-04 (Yang P, Zhang X, Improved DeepLabv3+
Road Surface Crack Detection Method)[J/OL] Computer Engineering
and Applications, 1-10, 2025-04-04)
[43] 余加勇,李锋,薛现凯,等.基于无人机及Mask R-CNN的桥梁结构裂缝
智能识别[J].中国公路学报,2021,34(12):80-90. (YU J Y, LI F, XUE X
K, et al. Intelligent Identification of Bridge Structural Cracks Based on
Unmanned Aerial Vehicle and Mask R-CNN[J]. China Journal of
Highway and Transport, 2021, 34 (12): 80-90)
[44] ZHENG Z ,WANG P ,LIU W , et al. Distance-IoU Loss: Faster and
Better Learning for Bounding Box Regression[J]. Proceedings of the
AAAI Conference on Artificial Intelligence,2020,34(07).
[45] 杨国俊,齐亚辉,杜永峰,等.改进YOLOv7和SeaFormer的桥梁裂缝识
别与测量[J].铁道科学与工程学报,2024-08-14: 1-14 (YANG G J, QI Y
H, DU Y F, et al. Improved YOLOv7 and SeaFormer Bridge Cracks
Identification and Measurement [J/OL]. Journal of Railway Science and
Engineering: 1-14 [2024-08-14] )
[46] 许华杰,郑力文,张品,等.基于多维注意力模块的轻量化混凝土裂缝检
测方法[J/OL].计算机工程,1-11[2025-02-11].(XU H J, ZHENG L W,
ZHANG P, et al. Lightweight Concrete Crack Detection Method Based
on Multi-Dimensional Attention Module[J/OL]. Computer Engineering :
1-14 [2024-08-14])
[47] 齐志龙. 基于图像识别的长距离输水建筑物水下混凝土裂缝和钢结
构锈蚀智能检测[D].天津:天津大学,2023. (QI Z L. Intelligent
Detection on Underwater Concrete Crack and Steel Corrosion Rust of
Long-Distance Water Conveyance Structures Based on Image
Recognition [D]. Tianjin: Tianjin University, 2023)
[48] Lv Z ,Dong S ,Xia Z et al.Enhanced real-time detection transformer
(RT-DETR) for robotic inspection of underwater bridge pier
cracks[J].Automation in Construction,2025,170105921-105921.
[49] DONGHO K, SUKHPREET S. BENIPAL, et al. Hybrid pixel-level
concrete crack segmentation and quantification across complex
backgrounds using deep learning[J]. Automation in Construction,
2020,118;103291.
[50] ELYAS A S, CHANG X, ARAVINDA S R, et al. Vision
transformer-based autonomous crack detection on asphalt and concrete
surfaces[J]. Automation in Construction, 2022,140:104316.
[51] 王艳,沈晓宇,丁文胜,等.基于PCNN和遗传算法相结合的新型混凝土
桥梁裂缝检测方法[J].计算机应用研究,2017,34(10):3197-3200.
( WANG Y, SHENG X N, DING W S, et al. New crack detection
method of concrete bridge based on PCNN and genetic algorithm[J]
Journal of Computer Applications, 2017,34(10):3197-3200.)
[52] 林少丹,冯晨,陈志德.基于Mask R-CNN的钢筋混凝土裂缝识别及测
量算法的研究[J].计算机应用研究,2020,37(S1):370-373. (LIN S D,
FENG C, CHEN Z D. Research on Crack Identification and
Measurement Algorithm of Reinforced Concrete Based on Mask
R-CNN[J]. Application Research of Computers, 2020, 37(S1):
370-373.)
[53] 余加勇,刘宝麟,尹东,等.基于YOLOv5和U-Net3+的桥梁裂缝智能识
别与测量[J].湖南大学学报(自然科学版),2023,50(05):65-73. (YU J Y,
LIU B L, YIN D, et al. Intelligent Identification and Measurement of
Bridge Cracks Based on YOLOv5 and U-Net3+ [J]. Journal of Hunan
University (Natural Science Edition), 2023, 50 (05): 65-73)
[54] 宰柯楠,徐江峰.基于遗传算法和简化PCNN的裂缝检测方法[J].计算
机应用研究,2017,34(06):1885-1888. (ZAI K N, XU J F. Method of
crack detection based on genetic algorithm and simplified pulse coupled
neural
network[J]
2017,34(06):1885-1888.)
Journal
of
Computer
Applications,
[55] Blay K B, et al. AI-Driven Crack Defect Identification in Reinforced
Autoclaved Aerated Concrete (RAAC) Structures[J]. International
Journal of Building Pathology and Adaptation, 2025, 43(2): 241-258.
[56] YANG J, GUO T, LI A. Experimental investigation on long-term
behavior of prestressed concrete beams under coupled effect of
sustained
load
and corrosion[J]. Advances in Structural
Engineering,2020,23(12).
[57] SERGIO R, ANGELO C, ANDREA N, et al. Using machine learning
[76] 黄凯奇,任伟强,谭铁牛.图像物体分类与检测算法综述[J].计算机学
报,2014,37(06):1225-1240. (HUANG K Q, REN W Q, TAN T N. A
Review on Image Object Classification and Detection[J]. Chinese
Journal of Computers, 2014, 37 (06): 1225-1240)
[77] 赵毅,杨旋,郝增恒,等.沥青混合料均匀性数字图像评价方法研究进展
[J].材料导报,2020,34(23):23088-23099. (ZHAO Y, YANG X, HAO Z
H, et al. Research Progress on Digital Image Evaluation Method of
Homogeneity of Asphalt Mixture [J]. Materials Reports, 2020, 34 (23):
23088-23099) |