[1] LEE A, KIM G, KIM S W, et al. A discrimination model
for dead cocoons using near-infrared transmission spectra
analyses[J]. Sensors and Actuators A: Physical, 2022, 346:
113857.
[2] PRASOBHKUMAR P P, FRANCIS C R, GORTHI S S.
Cocoon quality assessment system using vibration impact
acoustic emission processing[J]. Engineering in Agriculture,
Environment and Food, 2019, 12(4): 556-563.
[3] DAI F, WANG X Y, ZHONG Y S, et al. Convolution
neural network application in the simultaneous detection of
gender and variety of silkworm (bombyx mori) cocoons[C].
Journal of Physics: Conference Series. IOP Publishing,
2021, 1769(1): 012017.
[4] 陈楚汉, 钟杨生, 王先燕, 等. SVM 自助重加权采样的
蚕茧雌雄特征波长选择[J]. 光谱学与光谱分析, 2022,
42(04): 1173-1178.
CHEN Chuhan, ZHONG Yangsheng, WANG Xianyan, et
al. Feature selection algorithm for identification of male
and female cocoons based on SVM bootstrapping
re-weighted sampling[J]. Spectroscopy and Spectral
Analysis, 2022, 42(04): 1173-1178. (in Chinese with
English abstract)
[5] THOMAS S, THOMAS J. Comparative Analysis of
Non-Destructive Silkworm Cocoon Sex Classification
using Machine Learning Models Based on X-Ray and
Camera Images[C]//2024 International Conference on
Intelligent Algorithms for Computational Intelligence
Systems (IACIS). IEEE, 2024: 1-7.
[6] 张瀚丹, 吴一全. 基于视觉的汽车装配件缺陷检测研究
进展[J]. 仪器仪表学报, 2023, 44(08): 1-20.
ZHANG Handan, WU Yiquan. Research progress of
vehicle assembly detection methods based on vision[J].
Chinese Journal of Scientific Instrument, 2023, 44(08):
1-20. (in Chinese with English abstract)
[7] XIONG H T, CAI J H, ZHANG W H, et al. Deep learning
enhanced terahertz imaging of silkworm eggs
development[J]. Iscience, 2021, 24(11).
[8] YANG C J, PENG J S, CAI J H, et al. Research and design
of a machine vision-based silk cocoon quality inspection
system[C]//2023 IEEE 10th International Conference on
Cyber Security and Cloud Computing (CSCloud)/2023
IEEE 9th International Conference on Edge Computing
and Scalable Cloud (EdgeCom). IEEE, 2023: 369-374.
[9] 涂春梅, 孙卫红, 邵铁锋, 等. 基于透射图像的内印茧
识别研究[J]. 中国计量大学学报, 2023, 34(02): 303-310.
TU Chunmei, SUN Weihong, SHAO Tiefeng, et al.
Research on the recognition of inside-stained cocoons
based on transmission images[J]. Journal of China
University of Metrology, 2023, 34(02): 303-310. (inChinese with English abstract)
[10] LEE A, KIM G, HONG S J, et al. Classification of dead
cocoons using convolutional neural networks and machine
learning
methods[J].
137317-137327.
IEEE Access, 2023, 11:
[11] 沈明辉, 刘宇杰, 陈婧, 等. 基于改进 YOLOv8s 轻量化
网络的组装电脑主板缺陷检测算法[J/OL]. 计算机工程,
1-14[2025-02-28].
SHEN Minghui, LIU Yujie, CHEN Jing, et al. Defect
detection of printed circuit board assembly based on
lightweight
YOLOv8[J].
Computer
Engineering,
1-14[2025-02-28]. (in Chinese with English abstract)
[12] 殷建军, 康俊琪, 肖德琴. 基于改进YOLOv5l的轻量化
鸭蛋裂纹检测算法[J]. 农业工程学报, 2024, 40(05):
216-223.
YIN Jianjun, KANG Junqi, XIAO Deqin. Lightweight
detection algorithm for duck egg cracks based on improved
YOLOv5l[J]. Transactions of the Chinese Society of
Agricultural Engineering (Transactions of the CSAE), 2024,
40(5): 216-223. (in Chinese with English abstract)
[13] ZHU X Y, CHEN F J, ZHENG Y L, et al. Detection of
camellia oleifera fruit maturity in orchards based on
modified lightweight YOLO[J]. Computers and Electronics
in Agriculture, 2024, 226: 109471.
[14] FAN X P, SUN T, CHAI X J, et al. YOLO-WDNet: A
lightweight and accurate model for weeds detection in
cotton field[J]. Computers and Electronics in Agriculture,
2024, 225: 109317.
[15] LI Z P, ZHU Y J, SUI S S, et al. Real-time detection and
counting of wheat ears based on improved YOLOv7[J].
Computers and Electronics in Agriculture, 2024, 218:
108670.
[16] MENG X P, LI C C, LI J B, et al. YOLOv7-MA: Improved
YOLOv7-based wheat head detection and counting[J].
Remote Sensing, 2023, 15(15): 3770.
[17] LI S, TAO T, ZHANG Y, et al. YOLO v7-CS: A YOLO
v7-based model for lightweight bayberry target detection
count[J]. Agronomy, 2023, 13(12): 2952.
[18] 张震, 周俊, 江自真, 等. 基于改进 YOLO v7 轻量化模
型的自然果园环境下苹果识别方法[J]. 农业机械学报,
2024, 55(03): 231-242+262.
ZHANG Zhen, ZHOU Jun, JIANG Zizhen, et al.
Lightweight apple recognition method in natural orchard
environment based on improved YOLO v7 model[J].
Transactions of the Chinese Society for Agricultural
Machinery, 2024, 55(03): 231-242+262. (in Chinese with
English abstract)
[19] QUACH L D, QUOC K N, QUYNH A N, et al. Tomato
health monitoring system: Tomato classification, detection,
and counting system based on YOLOv8 model with
explainable MobileNet models using Grad-CAM++[J].
IEEE Access, 2024, 12: 9719-9737.
[20] DUONG L T, TRAN T B, LE N H, et al. Automatic
detection of weeds: synergy between EfficientNet and
transfer learning to enhance the prediction accuracy[J].
Soft Computing, 2024, 28(6): 5029-5044.
[21] ZHOU H, SU Y, CHEN J, et al. Maize leaf disease
recognition based on improved convolutional neural
network shufflenetv2[J]. Plants, 2024, 13(12): 1621.
[22] KAUR K, DHIR R. Deep learning based hybrid ghost-net
for
metaspread chromosome image segmentation[J].
Biomedical Signal Processing and Control, 2024, 95:
106298.
[23] 孙俊, 贾忆琳, 吴兆祺, 等. 基于改进 YOLOv7 的棉田
虫害检测[J]. 农业工程学报, 2024, 40(10): 176-184.
SUN Jun, JIA Yilin, WU Zhaoqi, et al. Detecting pests in
cotton fields using improved YOLOv7[J]. Transactions of
the Chinese Society of Agricultural Engineering
(Transactions of the CSAE), 2024, 40(10): 176-184. (in
Chinese with English abstract)
[24] XIAO J Y, KANG G B, WANG L H, et al. Real-time
lightweight detection of lychee diseases with enhanced
YOLOv7 and edge computing[J]. Agronomy, 2023, 13(12):
2866.
[25] HAN K, WANG Y H, TIAN Q, et al. Ghostnet: More
features from cheap operations[C]//Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition. 2020: 1580-1589.
[26] 黄杰, 王相友, 吴海涛, 等. 基于轻量型卷积神经网络
的马铃薯种薯芽眼检测算法[J]. 农业工程学报, 2023,
39(09): 172-182.
HUANG Jie, WANG Xiangyou, WU Haitao, et al.
Detecting potato seed bud eye using lightweight
convolutional neuralnetwork[J]. Transactions of the
Chinese Society of Agricultural Engineering (Transactions
of the CSAE), 2023, 39(09): 172-182. (in Chinese with
English abstract)
[27] LU X C, JIANG Q S, SHEN Y H, et al. Enhanced residual
convolutional domain adaptation network with CBAM for
RUL prediction of cross-machine rolling bearing[J].
Reliability Engineering & System Safety, 2024, 245:
109976.
[28] 许晓阳, 魏伟, 高重阳. 基于改进 YOLOv7-tiny 的红外
船 舶 目标检测算法[J/OL]. 计 算 机 工 程 ,
1-15[2025-02-28].
XU Xiaowei, WEI wei, GAO Chongyang. Infrared ship
target
detection
YOLOv7-tiny[J/OL].
algorithm
based
Computer
on improved
Engineering,
1-15[2025-02-28]. (in Chinese with English abstract)
[29] 罗斌, 李家超, 周亚男, 等. 基于改进 YOLOv8 轻量化
稻瘟病孢子检测方法[J]. 农业机械学报,
1-8[2024-10-17].
LUO Bin, LI Jiachao, ZHOU Yanan, et al. Based on the
improved YOLOv8 lightweight rice blast spores detection
method[J/OL]. Transactions of the Chinese Society for
Agricultural Machinery, 1-8[2024-10-17]. (in Chinese with
English abstract)
[30] 李婕, 杨子豪, 郑权, 等. 基于RT-WEDT的麦穗检测与
计数方法[J/OL]. 农业工程学报, 1-11[2024-11-20].
LI Jie, YANG Zihao, ZHENG Quan, et al. Method for
detecting and counting wheat ears using RT-WEDT[J].
Transactions of the Chinese Society of Agricultural
Engineering (Transactions of the CSAE), 2024, 40(21):
146-156. (in Chinese with English abstract)
[31] CHEN Q, LI M, LAI Z, et al. A multi-scale target detection
method using an improved faster region convolutional
neural network based on enhanced backbone and optimized
mechanisms[J]. Journal of Imaging, 2024, 10(8): 197.
[32] 吴利刚, 陈乐, 周倩, 等. 基于轻量化高效层聚合网络
的黄花成熟度检测方法[J]. 农业机械学报, 2024, 55(02):
268-277.
WU Ligang, CHEN Le, ZHOU Qian, et al. Maturity
detection method for hemerocallis citrina baroni based on
lightweight and efficient layer aggregation network[J].
Transactions of the Chinese Society for Agricultural
Machinery, 2024, 55(02): 268-277. (in Chinese with
English abstract) |