[1]
[2]
[3]
[4]
[5]
[6]
Fisher R, O’Leary R A, Low-Choy S, et al.
Species richness on coral reefs and the pursuit of
convergent global estimates[J]. Current Biology,
2015, 25(4): 500-505.
Voolstra C R, Peixoto R S, Ferrier‐Pagès C.
Mitigating the ecological collapse of coral reef
ecosystems: effective strategies to preserve coral
reef ecosystems[J]. EMBO reports, 2023, 24(4):
e56826.
Eddy T D, Lam V W Y, Reygondeau G, et al.
Global decline in capacity of coral reefs to
provide ecosystem services[J]. One Earth, 2021,
4(9): 1278-1285.
Nguyen N B A, Chen L Y, El-Shazly M, et al.
Towards sustainable medicinal resources through
marine soft coral aquaculture: Insights into the
chemical diversity and the biological potential[J].
Marine Drugs, 2022, 20(10): 640.
Almutiry O, Iqbal K, Hussain S, et al. Underwater
images contrast enhancement and its challenges: a
survey[J]. Multimedia Tools and Applications,
2024: 1-26.
Wang M, Zhang K, Wei H, et al. Underwater
image
quality
optimization:
Researches,
challenges, and future trends[J]. Image and Vision
Computing, 2024: 104995.
[7]
Zhong J, Li M, Qin J, et al. Real-time marine
animal detection using YOLO-based deep
learning networks in the coral reef ecosystem[J].
The
International
Archives
of
the
Photogrammetry, Remote Sensing and Spatial
Information Sciences, 2022, 46: 301-306.
[8]
[9]
Lu Z, Zhu X, Guo H, et al. FishFocusNet: An
improved method based on YOLOv8 for
underwater tropical fish identification[J]. IET
Image Processing, 2024.
Beijbom O, Edmunds P J, Kline D I, et al.
Automated annotation of coral reef survey
images[C]//2012 IEEE conference on computer
vision and pattern recognition. IEEE, 2012:
1170-1177.
[10] Chen Q, Beijbom O, Chan S, et al. A new deep
learning engine for coralnet[C]//Proceedings of
the
IEEE/CVF international conference on
computer vision. 2021: 3693-3702.
[11] Kevin E Kohler and Shaun M Gill. Coral point
count with excel extensions (cpce): A visual basic
program for the determination of coral and
substrate coverage using random point count
methodology.
Computers
32(9):1259–1269, 2006. 2, 3, 7
& geosciences,
[12] Inigo Alonso, Matan Yuval, Gal Eyal, Tali Treibitz,
and Ana C Murillo. Coralseg: Learning coral
segmentation from sparse annotations. Journal of
Field Robotics, 36(8):1456–1477, 2019. 2, 3
[13] Zhang H, Li M, Zhong J, et al. CNet: A Novel
Seabed
Coral Reef Image Segmentation
Approach
Based
on
Deep
Learning[C]//Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer
Vision. 2024: 767-775.
[14] Zheng Z, Liang H, Hua B S, et al. CoralSCOP:
Segment
any
COral
Planet[C]//Proceedings
Image
of
the
on
this
IEEE/CVF
Conference on Computer Vision and Pattern
Recognition. 2024: 28170-28180.
[15] Redmon J, Farhadi A. YOLO9000: better, faster,
stronger[C]//Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017:
7263-7271.
[16] Redmon J, Farhadi A. Yolov3: An incremental
improvement[J].
arXiv
arXiv:1804.02767, 2018.
preprint
[17] Bochkovskiy A. YOLOv4: Optimal Speed and
Accuracy of Object Detection[J]. arXiv preprint
arXiv:2004.10934, 2020.
[18] Ge Z, Liu S, Wang F, et al. Yolox: Exceeding yolo
series
in
2021[J].
arXiv:2107.08430, 2021.
arXiv
preprint
[19] Li C, Li L, Jiang H, et al. YOLOv6: A
single-stage object detection framework for
industrial
applications[J].
arXiv:2209.02976, 2022.
arXiv
preprint
[20] Wang C Y, Bochkovskiy A, Liao H Y M.
YOLOv7: Trainable bag-of-freebies sets new
state-of-the-art
for
real-time
object
detectors[C]//Proceedings of the IEEE/CVF
conference on computer vision and patternrecognition. 2023: 7464-7475.
[21] Wang C Y, Yeh I H, Liao H Y M. Yolov9:
Learning what you want to learn using
programmable gradient information[J]. arXiv
preprint arXiv:2402.13616, 2024.
[22] Wang A, Chen H, Liu L, et al. Yolov10: Real-time
end-to-end object detection[J]. arXiv preprint
arXiv:2405.14458, 2024.
[23] 唐克,魏飞鸣,李东瀛,等. 基于改进 YOLOv8 的
轻量化无人机图像目标检测算法 [J/OL]. 计算
机工程,
1-11[2025-03-04].https://doi.org/10.19678/j.issn.
1000-3428.0070085.
TANG Ke,WEI Feiming,LI Dongying,et
al.Lightweight Target Detection Algorithm in
UAV Images Based on Improved
YOLOv8[J/OL].Computer Engineering,1-11
[2025-03-04].https://doi.org/10.19678/j.issn.1000
3428.0070085.
[24] 魏文泉,莫宏伟.基于改进YOLOv5s的PCB缺陷
检测算法[J/OL].计算机工程,1-13[2025-03-04].
https://doi.org/10.19678/j.issn.1000-3428.007037
6.
WEI W X, MO H W.PCB defect detection
algorithm based on improved YOLOv5s
[J/OL].Computer
Engineering,1-13[2025-03-04].https://doi.org/10.1
9678/j.issn.1000-3428.0070085.
[25] Yang Y, Chen L, Zhang J, et al. UGC-YOLO:
underwater environment object detection based
on YOLO with a global context block[J]. Journal
of Ocean University of China, 2023, 22(3):
665-674.
[26] Hu X, Liu Y, Zhao Z, et al. Real-time detection of
uneaten feed pellets in underwater images for
aquaculture using an improved YOLO-V4
network[J]. Computers and electronics in
agriculture, 2021, 185: 106135.
[27] Chen J, Er M J. Dynamic YOLO for small
underwater
object
detection[J].
Artificial
Intelligence Review, 2024, 57(7): 1-23.
[28] 闵锋,张雨薇,刘煜晖,等.改进YOLOv8的轻量化
水下生物检测模型[J/OL].计算机工程与应
用,1-11[2025-02-02].http://kns.cnki.net/kcms/det
ail/11.2127.TP.20241125.1550.008.html.
MIN F,ZHANG Y W,LIU Y H, et al.Improving
the light weight underwater biological detection
model of YOLOv8[J/OL].Computer Engineering
and
Applications,
1-11[2025-02-02].http://kns.cnki.net/kcms/detail/
11.2127.TP.20241125.1550.008.html.
[29] Wan D, Lu R, Hu B, et al. YOLO-MIF: Improved
YOLOv8 with Multi-Information fusion for
object detection in Gray-Scale images[J].
Advanced Engineering Informatics, 2024, 62:
102709.
[30] Li H, Li J, Wei H, et al. Slim-neck by GSConv: a
lightweight-design
for
real-time
detector
architectures[J]. Journal of Real-Time Image
Processing, 2024, 21(3): 62.
[31] Ge Z, Liu S, Li Z, et al. Ota: Optimal transport
assignment for object detection[C]//Proceedings
of the IEEE/CVF conference on computer vision
and pattern recognition. 2021: 303-312.
[32] Lyu C, Zhang W, Huang H, et al. Rtmdet: An
empirical study of designing real-time object
detectors[J]. arXiv preprint arXiv:2212.07784,
2022.
[33] Feng C, Zhong Y, Gao Y, et al. Tood: Task-aligned
one-stage object detection[C]//2021 IEEE/CVF
International Conference on Computer Vision
(ICCV).
IEEE Computer Society, 2021:
3490-3499.
[34] Xiang Li, Chengqi Lv, Wenhai Wang, Gang Li,
LingfengYang, and Jian Yang. Generalized focal
loss: Towards efficient representation learning for
dense object detection.IEEE Transactions on
Pattern Analysis and Machine Intel-ligence, pages
1–14, 2022. 4
[35] Ding X, Zhang X, Han J, et al. Diverse branch
block: Building a convolution as an inception-like
unit[C]//Proceedings
of
the
IEEE/CVF
conference on computer vision and pattern
recognition. 2021: 10886-10895.
[36] Kirillov A, Mintun E, Ravi N, et al. Segment
anything[C]//Proceedings of the IEEE/CVF
International Conference on Computer Vision.
2023: 4015-4026.
[37] Wang, Z.Y., Chen, L., Xu, H.Y., et al. Mamba
YOLO: A Simple Baseline for Object Detection
with
State
Space Model. arXiv preprint
arXiv:2406.05835.
[38] Zhao, Y., Lv, W., Xu, S., et al., 2024. Detrs beat
yolos on real-time object detection. Proceedings
of the IEEE/CVF Conference on Computer
Vision and PatternRecognition. pp. 16965–16974.
[39] Draelos R L, Carin L. Hirescam: Explainable
multi-organ multi-abnormality prediction in 3d
medical images[J]. Arxiv preprint, 2020. |