[1] Gu R, Huang X, Dai H, et al. Efficient. Scalable and robust
data shuffle service for distributed MapReduce computing
on cloud[C]//2022 IEEE 24th Int Conf on High
Performance Computing & Communications, 2022:
337-346.
[2] 陈勇旭,陈梦杰,刘雪冰等.基于MapReduce的连接聚集查
询算法研究[J].计算机研究与发展,2013,50(S1):306-311.
Yongxu C, Mengjie C, Xuebing L, et al. MapReduce based
aggregate-join query algorithms[J]. Journal of Computer
Research and Development, 2013,50(S1):306-311. (in
Chinese)
[3] 吴恩慈.广播机制解决Shuffle过程数据倾斜的方法[J].计
算机系统应用,2019,28(06):189-197.
Enci W. Method Research to Solve Shuffle Data Skew
Based on Broadcast [J]. Computer Systems & Applications,
2019,28(6):189−197. (in Chinese)
[4] Foto N, Jeffrey D. Optimizing joins in a map-reduce
environment[C]//Proceedings of the 13th International
Conference on Extending Database Technology (EDBT
'10), 2010: 99–110.
[5] 高锦涛,李战怀,杜洪涛等.分布式数据库下基于剪枝的并
行合并连接策略[J].软件学报,2019,30(11):3364-3381.
Jintao G, Zhanhuai L, Hongtao D, et al. Strategy of Parallel
Merge Join Based on Prune in Distributed Database [J].
Journal of Software, 2019, 30(11):3364-3381. (in Chinese) [6] Laks V, Jian P, Jiawei H. Quotient cube: How to summarize
the semantics of a data cube[C]// VLDB’02: Proceedings
of the 28th International Conference on Very Large Data
Bases, 2002: 778–789.
[7] Yuting L, Divyakant A, Chun C, et al. Llama: Leveraging
columnar storage for scalable join processing in the
MapReduce framework[C]//Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data,
2011: 961–972.
[8] 乔百友, 朱俊海, 郑宇杰等. 一种基于 Spark 的多路空间
连接查询处理算法[J]. 计算机研究与发展, 2017, 54(07):
1592-1602.
Baiyou Q, Junhai Z, Yujie Z, et al. A Multi-Way Spatial
Join Querying Processing Algorithm Based on Spark [J].
Journal of Computer Research and Development, 2017,
54(07): 1592-1602. (in Chinese)
[9] Peter J, Joseph M. Hellerstein. Ripple joins for online
aggregation[C]//Proceedings of the 1999 ACM SIGMOD
International Conference on Management of data,1999:
287–298.
[10] Manas R. Joglekar, Rohan Puttagunta, and Christopher Ré.
AJAR: Aggregations and joins over annotated
relations[C]//Proceedings
of
the
35th
ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS '16),2016: 91–106.
[11] F. García-García, A. Corral, L. Iribarne, et al. Efficient
distributed algorithms for distance join queries in
spark-based spatial analytics systems[J]. Int.J. Gen. Syst.
52 (2023) 206–250.
[12] Azhir E, Navimipour N, Hosseinzadeh M, et al. Join
queries optimization in the distributed databases using a
hybrid multi-objective algorithm[J]. Cluster Comput
25(2022), 2021–2036.
[13] Feng L, Francis C, Heming C, et al. Relative-cost-based
selection of distributed join methods for query plan
optimization[J].
Information
Sciences
https://doi.org/10.1016/j.ins.2023.120022.
658(2024).
[14] Runsheng B, Khuzaima D. Research challenges in deep
reinforcement
learning-based
join
query
optimization[C]//Proceedings of the Third International
Workshop on Exploiting Artificial Intelligence Techniques
for Data Management, 2020: 1–6.
[15] Eich M, Pit F, Guido M. Efficient generation of query plans
containing group-by, join, and groupjoin[J]. The VLDB
Journal, 2017, 27: 617 - 641.
[16] Xuanhe Z, Guoliang L, Chengliang C, et al. A learned
query rewrite system using Monte Carlo tree
search[C]//Proc. VLDB Endow. 15, 1 (September 2021),
46–58.
[17] Jim G, Surajit C, Adam B, et al. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and
sub-totals[J]. Data mining and knowledge discovery, 1997,
1:29–53.
[18] Sachin B, Peter L, Zhekai J, et al. Aggregation and
exploration of high-dimensional data using the sudokube
data cube engine[C]//Proceedings of the 2023 ACM
SIGMOD International Conference on Management of data,
2023:175–178.
[19] Sachin B, Christoph K. High-dimensional data
cubes[C]//Proceedings of the VLDB Endowment, 2022,
15(13):3828–3840.
[20] Laks V, Jian P, Yan Z. QC-trees: An efficient summary
structure for semantic OLAP[C]//Proceedings of the 2003
ACM SIGMOD international conference on Management
of data. 2003: 64–75.
[21] 徐静文,游进国,王全鹍,等.数据立方体与频繁项集的统
一计算框架研究[J].计算机学报,2023,46(04):780-802.
Jingwen X, Jinguo Y, Quankun W, et al. Unified
Computing Framework for Data Cubes and Frequent
Itemsets[J]. Chinese Journal of Computers, 2023, 46(04):
780-802. (in Chinese)
[22] 游进国,董朋志,胡宝丽等.语义 OLAP 缓存技术研究[J].
小型微型计算机系统,2015,36(07):1470-1475.
Jinguo Y, Pengzhi D, Baoli H, et al. Research of semantic
OLAP caching[J]. Journal of Chinese Computer Systems,
2015, 36(7): 1470-1475. (in Chinese)
[23] 何培蕾,游进国,王宇轩等.数据库条件查询的非语义等价
关系建模[J/OL].小型微型计算机系统,2024:1-7.
Peilei H, Jinguo Y, Yuxuan W, et al. Non-semantic
equivalence relation modeling of conditional query in
databases[J/OL]. Journal of Chinese Computer Systems,
2024: 1-7. (in Chinese)
[24] TPC-H benchmark[EB/OL]. https://www.tpc.org/tpch/.
|