[1] Touvron H, Lavril T, Izacard G, et al. LLaMA: open and efficient foundation language models. arXiv[J]. arXiv preprint arXiv:2302.13971, 2023.
[2] Anil R, Dai A M, Firat O, et al. Palm 2 technical report[J]. arXiv preprint arXiv:2305.10403, 2023.
[3] Chowdhery A, Narang S, Devlin J, et al. Palm: Scaling language modeling with pathways[J]. Journal of Machine Learning Research, 2023, 24(240): 1-113.
[4] Fujii K, Nakamura T, Loem M, et al. Continual Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capabilities[J]. arXiv preprint arXiv:2404.17790, 2024.
[5] Zhang S, Fang Q, Zhang Z, et al. BayLing: Bridging Cross-lingual Alignment and Instruction Following through Interactive Translation for Large Language Models[J]. arXiv pre-print server, 2023.
[6] Lu K, Yang Y, Yang F, et al. Low-Resource Language Expansion and Translation Capacity Enhancement for LLM: A Study on the Uyghur[C]. Proceedings of the 31st International Conference on Computational Linguistics, 2025: 8360-8373.
[7] Guo D, Yang D, Zhang H, et al. Deepseek-r1: Incentivizing reasoning capability in LLM via reinforcement learning[J]. arXiv preprint arXiv:2501.12948, 2025.
[8] Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv:1707.06347, 2017.
[9] Rafailov R, Sharma A, Mitchell E, et al. Direct preference optimization: Your language model is secretly a reward model[J]. Advances in Neural Information Processing Systems, 2024, 36.
[10] Wang P, Xu A, Zhou Y, et al. Direct Judgement Preference Optimization[J]. arXiv preprint arXiv:2409.14664, 2024.
[11] Chen G, Liao M, Li C, et al. Step-level Value Preference Optimization for Mathematical Reasoning[J]. arXiv preprint arXiv:2406.10858, 2024.
[12] Xu H, Sharaf A, Chen Y, et al. Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation[C]. Forty-first International Conference on Machine Learning.
[13] He Z, Wang X, Jiao W, et al. Improving Machine Translation with Human Feedback: An Exploration of Quality Estimation as a Reward Model[C]. Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), 2024: 8157-8173.
[14] Costa-Jussà M R, Cross J, Çelebi O, et al. No language left behind: Scaling human-centered machine translation[J]. arXiv preprint arXiv:2207.04672, 2022.
[15] Mao Z, Yu Y. Tuning LLM with contrastive alignment instructions for machine translation in unseen, low-resource languages[J]. arXiv preprint arXiv:2401.05811, 2024.
[16] Zhang X, Rajabi N, Duh K, et al. Machine translation with large language models: Prompting, few-shot learning, and fine-tuning with QLoRA[C]. Proceedings of the Eighth Conference on Machine Translation, 2023: 468-481.
[17] 侯钰涛, 阿布都克力木•阿布力孜, 史亚庆, et al. 面向"一带一路"的低资源语言机器翻译研究[J]. 计算机工程, 2024, 50(4): 332-341.
Hou Y, Abudukelimu A, Shi Y, Research on low-resource language machine translation for the "Belt an Road" [J]. Computer Engineering, 2024, 50(4): 332-341.
[18] Yin Y, Zeng J, Li Y, et al. LexMatcher: Dictionary-centric Data Collection for LLM-based Machine Translation[J]. arXiv preprint arXiv:2406.01441, 2024.
[19] Feng Z, Zhang Y, Li H, et al. Improving LLM-based machine translation with systematic self-correction[J]. arXiv preprint arXiv:2402.16379, 2024.
[20] Raunak V, Sharaf A, Wang Y, et al. Leveraging GPT-4 for Automatic Translation Post-Editing[C]. Findings of the Association for Computational Linguistics: EMNLP 2023, 2023: 12009-12024.
[21] 李博, 季佰军, 段湘煜. 基于译文易错词纠正机制的大语言模型机器翻译[J]. 计算机工程: 0.
Li B, Ji B, Duan X, Machine Translation with Large Language Models Based on the Correction Mechanism of the Translations Error-Prone Words [J]. Computer Engineering, 0.
[22] Ma Y J, Liang W, Wang G, et al. Eureka: Human-Level Reward Design via Coding Large Language Models[C]. 2nd Workshop on Language and Robot Learning: Language as Grounding, 2023.
[23] Wu Y, Fan Y, Liang P P, et al. Read and reap the rewards: Learning to play atari with the help of instruction manuals[J]. Advances in Neural Information Processing Systems, 2023, 36: 1009-1023.
[24] Zhou Z, Hu B, Zhao C, et al. Large language model as a policy teacher for training reinforcement learning agents[C]. Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, 2024: 5671-5679.
[25] 罗焕坤, 葛一烽, 刘帅. 大语言模型在数学推理中的研究进展[J]. 计算机工程: 0.
Luo H, Ge Y, Liu S, Research Progress of Large Language Models in Mathematical Reasoning [J]. Computer Engineering, 0.
[26] Yang G, Chen J, Lin W, et al. Direct Preference Optimization for Neural Machine Translation with Minimum Bayes Risk Decoding[C]. Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers), 2024: 391-398.
[27] Ouyang L, Wu J, Jiang X, et al. Training language models to follow instructions with human feedback[J]. Advances in neural information processing systems, 2022, 35: 27730-27744.
[28] Achiam J, Adler S, Agarwal S, et al. Gpt-4 technical report[J]. arXiv preprint arXiv:2303.08774, 2023.
[29] Xu H, Murray K, Koehn P, et al. X-alma: Plug & play modules and adaptive rejection for quality translation at scale[J]. arXiv preprint arXiv:2410.03115, 2024.
[30] Post M. A Call for Clarity in Reporting BLEU Scores[J]. WMT 2018, 2018: 186.
[31] Rei R, Stewart C, Farinha A C, et al. COMET: A Neural Framework for MT Evaluation[C], 2020: 2685-2702.
[32] Guerreiro N M, Rei R, Stigt D V, et al. xcomet: Transparent machine translation evaluation through fine-grained error detection[J]. Transactions of the Association for Computational Linguistics, 2024, 12: 979-995.
[33] Barrault L, Bojar O, Costa-Jussa M R, et al. Findings of the 2019 conference on machine translation (WMT19)[C], 2019.
[34] Federmann C, Kocmi T, Xin Y. NTREX-128–news test references for MT evaluation of 128 languages[C]. Proceedings of the first workshop on scaling up multilingual evaluation, 2022: 21-24.
[35] Üstün A, Aryabumi V, Yong Z, et al. Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model[C]. Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2024: 15894-15939.
[36] Xue L, Constant N, Roberts A, et al. mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer[C]. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021: 483-498.
[37] Lu Y, Zhu W, Li L, et al. LLaMAX: Scaling Linguistic Horizons of LLM by Enhancing Translation Capabilities Beyond 100 Languages[C]. Findings of the Association for Computational Linguistics: EMNLP 2024, 2024: 10748-10772.
[38] Touvron H, Martin L, Stone K, et al. Llama 2: Open foundation and fine-tuned chat models[J]. arXiv preprint arXiv:2307.09288, 2023.
[39] Dubey A, Jauhri A, Pandey A, et al. The llama 3 herd of models[J]. arXiv preprint arXiv:2407.21783, 2024.
[40] Rei R, De Souza J G, Alves D, et al. COMET-22: Unbabel-IST 2022 submission for the metrics shared task[C]. Proceedings of the Seventh Conference on Machine Translation (WMT), 2022: 578-585.
|