[1] Narayanan,Barath Narayanan,Djaneye-Boundjou, et al.
Performance analysis of machine learning and pattern
recognition algorithms for malware classification[C]//2016
Ieee National Aerospace and Electronics Conference
(naecon) and Ohio Innovation Summit (ois), 2016:
338-342.
[2] Vasan,Danish,Alazab, et al. IMCFN: Image-based
malware classification using fine-tuned convolutional
neural network architecture[J]. Computer Networks, 2020,
171: 107138.
[3] Yuan,Baoguo,Wang, et al. Byte-level malware
classification based on markov images and deep
learning[J]. Computers \& Security, 2020, 92.
[4] Kamran Shaukat,Suhuai Luo,Vijay Varadharajan. A novel
deep learning-based approach for malware detection[J].
Engineering Applications of Artificial Intelligence, 2023,
122: 106030.
[5] Lin,Wei-Cheng,Yeh, et al. Efficient malware classification
by binary sequences with one-dimensional convolutional
neural networks[J]. Mathematics, 2022, 10(4).
[6] Zhang,Xiaoliang,Wu, et al. MalCaps: a capsule network
based model for the malware classification[J]. Processes,
2021, 9(6).
[7] Xiao,Mao,Guo , et al. Image-based malware classification
using section distribution information[J]. Computers \&
Security, 2021, 110.
[8] Çayır,Aykut,{\"U}nal, et al. Random CapsNet forest
model for imbalanced malware type classification task[J].
Computers \& Security, 2021, 102.
[9] Yan,Jiaqi,Yan, et al. Classifying malware represented as
control flow graphs using deep graph convolutional neural
network[C]//2019 49th Annual Ieee/ifip International
Conference on Dependable Systems and Networks (dsn),
2019: 52-63.
[10] Aslan,Ömer,Yilmaz, et al. A new malware classification
framework based on deep learning algorithms[J]. Ieee
Access, 2021, 9: 87936-87951.
[11] Haiming Wang,Yuntao Zhao,Zijun Wang. Doc2vec-GRU:
A Behavior Classifcation Method for Malicious Code[J]:
1-10.
[12] Yesir,Salih,Soğukpinar, et al. Malware detection and
classification using fasttext and bert[C]//2021 9th
International Symposium on Digital Forensics and
Security (isdfs), 2021: 1-6.
[13] Kumar,P Suresh,Mishra, et al. Malware Detection
Classification using Recurrent Neural Network[C]//2022
2nd International
Conference
on Technological
Advancements in Computational Sciences (ictacs), 2022:
876-880.
[14] Gibert,Daniel,Mateu, et al. HYDRA: A multimodal deep
learning framework for malware classification[J].
Computers \& Security, 2020, 95.
[15] Gibert D, Planes J, Mateu C, et al. Fusing feature
engineering and deep learning: A case study for malware
classification[J]. Expert Systems with Applications, 2022,
207: 117957.
[16] Seongkyu Yeom 1 Haengrok Oh 2 Dongil Shin 1 and
Dongkyoo Shin 1* Sungjoong Kim 1,sejong.ac.kr
(S.K.),dae02159, et al. Automatic Malicious Code
Classifcation System through Static Analysis Using
Machine Learning[J]: 1-11.
[17] Yousuf,Muhammad Irfan,Anwer, et al. Windows malware
detection based on static analysis with multiple features[J].
Peerj Computer Science, 2023, 9.
[18] Ullah,Farhan,Srivastava, et al. A malware detection system
using a hybrid approach of multi-heads attention-based
control flow traces and image visualization[J]. Journal of
Cloud Computing, 2022, 11(1).
[19] Singh,Jagsir,Singh, et al. Detection of malicious software
by analyzing the behavioral artifacts using machine
learning algorithms[J]. Information and Software
Technology, 2020, 121.
[20] Kim,Jin-Young,Cho, et al. Obfuscated malware detection
using deep generative model based on global/local
features[J]. Computers \& Security, 2022, 112.
[21] 熊其冰,郭洋,王世豪.基于多特征融合和增强模型的恶
意代码检测方法[J].通信技术,2023,56(05):640-646.
Xiong Qibing, Guo Yang, Wang Shihao. Malicious Code
Detection Method Based on Multi-Feature Fusion and
Enhanced Model[J]. Communications Technology, 2023,
56(05): 640-646.
[22] 李梦,刘万平,黄东.基于特征融合的恶意代码检测[J].计
算机工程与设
计,2024,45(12):3568-3574.DOI:10.16208/j.issn1000-7024
.2024.12.007.
Li Meng, Liu Wanping, Huang Dong. Malicious Code
Detection Based on Feature Fusion[J]. Computer
Engineering and Design, 2024, 45(12): 3568 - 3574. DOI:
10.16208/j.issn1000 - 7024.2024.12.007.
[23] 王硕,王坚,王亚男,等.一种基于特征融合的恶意代码快
速检测方法[J].电子学报,2023,51(01):57-66.
Wang Shuo, Wang Jian, Wang Yanan, et al. A Fast
Malicious Code Detection Method Based on Feature
Fusion[J]. Acta Electronica Sinica, 2023, 51(01): 57-66.
[24] Yan H, Zhang J, Tang Z, et al. Malware classification
method based on feature fusion[J]. International Journal of
Information Security, 2025, 24(2): 1-17.
[25] Xuan B, Li J, Song Y. BiTCN-TAEfficientNet malware
classification approach based on sequence and RGB
fusion[J]. Computers & Security, 2024, 139: 103734.
[26] Alessandro Panconesi,Marian,Will Cukierski, et al.
Microsoft Malware Classification Challenge (BIG
2015)[Z]: Kaggle, 2015.
[27] MalwareBazaar. (2020). Malware samples repository.
[Online]. Available: https://bazaar.abuse.ch/.
[28] Koonce B. ResNet 50[M]//Convolutional neural networks
with swift for tensorflow: image recognition and dataset
categorization. Berkeley, CA: Apress, 2021: 63-72.
[29] Ojala,Timo,Pietikainen, et al. Performance evaluation of
texture measures with classification based on Kullback
discrimination of distributions[C]//Proceedings of 12thInternational Conference on Pattern Recognition, 1994:
582-585.
[30] Haralick,Robert M,Shanmugam, et al. Textural features
for image classification[J]. Ieee Transactions on Systems,
Man, and Cybernetics, 1973, (6): 610-621.
[31] Zhang,Yunan,Huang, et al. Using multi-features and
ensemble learning method for imbalanced malware
classification.
In
2016
Trustcom/BigDataSE/ISPA[Z]: Ieee, 2016.
IEEE
[32] Ke,Guolin,Meng, et al. Lightgbm: A highly efficient
gradient boosting decision tree[J]. Advances in Neural
Information Processing Systems, 2017, 30.引用本文格式:
中 文:冯帅,高见.基于融合特征的恶意代码分类方法
[J]. ****,****,**,(**):00-0
|