[1] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao,
“Application of machine learning in wireless networks: Key
techniques and open issues,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 4, pp. 3072–3108, 2019.
[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B.
A. y Arcas, “Communication-efficient learning of deep
networks from decentralized data,” in Artificial intelligence
and statistics, PMLR, 2017, pp. 1273–1282.
[3] 熊世强, 何道敬, 王振东, 杜润萌. 联邦学习及其安全
与隐私保护研究综述[J]. 计算机工程, 2024, 50(5): 1-15.
XIONG Shiqiang, HE Daojing, WANG Zhendong, DU
Runmeng. Review of Federated Learning and Its Security and
Privacy Protection[J]. Computer Engineering, 2024, 50(5):
1-15.
[4] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar,
“Fully decentralized federated learning,” in Third workshop on
bayesian deep learning (NeurIPS), 2018.
[5] S. Augenstein, A. Hard, K. Partridge, and R. Mathews,
“Jointly learning from decentralized (federated) and
centralized data to mitigate distribution shift,” arXiv preprint
arXiv:2111.12150, 2021.
[6] 刘炜,马杰,夏玉洁,等.一种基于区块链和梯度压缩的去
中心化联邦学习模型[J].郑州大学学报(理学版), 2024,
56(5):47-54.
Learning Model Based on Blockchain and Gradient
Compression. Journal of Zhengzhou University (Natural
Science Edition), 2024, 56(5):47-54.
[7]
周炜,王超,徐剑,等.基于区块链的隐私保护去中心化联
邦学习模型[J].计算机研究与发展, 2022, 59(11):2423-2436.
Wei Zhou, Chao Wang, Jian Xu, et al. Privacy-Preserving and
Decentralized Federated Learning Model Based on the
Blockchain. Journal of Computer Research and Development,
2022, 59(11): 2423–2436.
[8]
P. Voigt and A. Von dem Bussche, The EU general data
protection regulation (GDPR). A practical guide. Springer
International Publishing, 2017.
[9]
S. of C. D. of J. Office of the Attorney General,
“California
consumer
privacy
act
(CCPA).”
https://oag.ca.gov/privacy/ccpa, 2023.
[10] R. N. Daniel Hounslow, “Japan - data protection ov-erview (JDPO).” https://www.dataguidance.com/notes/japan-dataprotection-overview, 2019.
[11] G. of Canada, “Consumer privacy protection act.” 2
022. Available: https://ised-isde.canada.ca/site/innovation-be
tter-canada/en/consumer-privacy-protection-act
[12] Y. Cao and J. Yang, “Towards making systems forget
with machine unlearning,” in 2015 IEEE symposium on
security and privacy, IEEE, 2015, pp. 463–480.
[13] 王鹏飞, 魏宗正, 周东生, 等. 联邦忘却学习研究综述
[J]. 计算机学报, 2024, 47(2): 396-422.
WANG Pengfei, WEI Zongzheng, ZHOU Dongsheng, et al.
A Survey on Federated Unlearning[J]. Chinese Journal of
Computers, 2024, 47(2): 396-422.
[14] Zuo X, Wang M, Zhu T, et al. Federated learning with
blockchain-enhanced machine unlearning: A trustworthy
approach[J]. IEEE Transactions on Services Computing, 2025.
[15] G. Liu, X. Ma, Y. Yang, C. Wang, and J. Liu, “Federaser:
Enabling efficient client-level data removal from federated
learning models,” in 2021 IEEE/ACM 29th international
symposium on quality of service (IWQOS), IEEE, 2021, pp. 1
10.
[16] J. Wang, S. Guo, X. Xie, and H. Qi, “Federated
unlearning via class-discriminative pruning,” in Proceedings
of the ACM web conference 2022, 2022, pp. 622–632.
[17] T. Baumhauer, P. Schöttle, and M. Zeppelzauer,
“Machine unlearning: Linear filtration for logit-based
classifiers,” Machine Learning, vol. 111, no. 9, pp. 3203–3226,
2022.
[18] Z. Wang et al., “FedCSA: Boosting the convergence
speed of federated unlearning under data heterogeneity,” in
2023 IEEE intl conf on parallel & distributed processing with
applications, big data & cloud computing, sustainable
computing & communications, social computing & networking
(ISPA/BDCloud/SocialCom/SustainCom), IEEE, 2023, pp.
388–393.
[19] N. Su and B. Li, “Asynchronous federated unlearning,”
in IEEE INFOCOM 2023-IEEE conference on computer
communications, IEEE, 2023, pp. 1–10.
[20] Gong J, Simeone O, Kang J. Bayesian variational
federated
learning
and unlearning in decentralized
networks[C]//2021 IEEE 22nd International Workshop on
Signal Processing Advances in Wireless Communications
(SPAWC). IEEE, 2021: 216-220.
[21] Liu X, Li M, Wang X, et al. Decentralized federated
unlearning on blockchain[J]. CoRR, 2024.
[22] J. Macqueen, “Some methods for classification and
analysis of multivariate observations,” in Proceedings of 5-th
berkeley symposium on mathematical statistics and
probability/university of california press, 1967.
[23] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and
J. Liu, “Can decentralized algorithms outperform centralized
algorithms? A case study for decentralized parallel stochastic
gradient descent,” Advances in neural information processing
systems, vol. 30, 2017.
[24] M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert,
and Y. Zhang, “When machine unlearning jeopardizes privacy,”
in Proceedings of the 2021 ACM SIGSAC conference on
computer and communications security, 2021, pp. 896–911.
[25] J. Xu, Z. Wu, C. Wang, and X. Jia, “Machine unlearning:
Solutions and challenges,” IEEE Transactions on Emerging
Topics in Computational Intelligence, 2024.
[26] B. Le Bars, A. Bellet, M. Tommasi, E. Lavoie, and A.-M.
Kermarrec, “Refined convergence and topology learning for
decentralized sgd with heterogeneous data,” in International
conference on artificial intelligence and statistics, PMLR,
2023, pp. 1672–1702.
[27] M. Jaggi, “Revisiting frank-wolfe: Projection-free sparse
convex optimization,” in International conference on machine
learning, PMLR, 2013, pp. 427–435.
[28] R. Burkard, M. Dell’Amico, and S. Martello, Assignment
problems: Revised reprint. SIAM, 2012.
[29] D.
F.
Crouse,
“On
implementing
2D
rectangularassignment algorithms,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 52, no. 4, pp. 1679
1696, 2016.
[30] A. Krizhevsky, G. Hinton, et al., “Learning multiple
layers of features from tiny images,” 2009.
[31] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y.
Ng et al.,“Reading digits in natural images with unsupervised
feature learning,”in NIPS workshop on deep learning and
unsupervised feature learning, vol. 2011, no. 2. Granada, 2011,
p. 4.
[32] Krizhevsky A, Hinton G. Learning multiple layers of
features from tiny images[J]. 2009.
[33] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons,
“The non-iid data quagmire of decentralized machine learning,”
in International conference on machine learning, PMLR, 2020,
pp. 4387–4398.
[34] Arthur D, Vassilvitskii S. k-means++: The advantages of
careful seeding[R]. Stanford, 2006. |