[1] XIAO J, CHEN B, CHEN L, et al. Interpretable time-series neural turing machine for prognostic prediction of patients with type 2 diabetes in physician-pharmacist collaborative clinics[J]. International Journal of Medical Informatics, 2025, 195: 105737.
[2] ZYARAH A, KUDITHIPUDI D. Time-series forecasting and sequence learning using memristor-based reservoir system[J]. ACM Transactions on Embedded Computing Systems, 2025, 24(1): 1-17.
[3] 滕飞, 黄齐川, 李天瑞, 等. 大规模时间序列分析框架的研究与实现[J]. 计算机学报, 2020, 43(7): 1279-1292.
Teng F, Huang Q C, Li T R, et al. An analysis framework for large-scale time series[J]. Chinese Journal of Computers, 2020, 43(7): 1279-1292.
[4] OKOLICA J S, PETERSON G L, MILLS R F, et al. Sequence pattern mining with variables[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(1): 177-187.
[5] AGRAWAL R, SRIKANT R. Mining sequential patterns[C]//Proceedings of the 11th International Conference on Data Engineering. New York, NY: IEEE Computer Society, 1995: 3-14.
[6] 王珠林, 武优西, 王月华, 等. 具有周期间隙约束的负序列模式挖掘[J]. 计算机科学, 2023, 50(3): 147-154.
WANG Z L, WU Y X, WANG Y H, et al. Mining negative sequential patterns with periodic gap constraints[J]. Computer Science, 2023, 50(3): 147-154.
[7] WU Y X, CHEN M J, LI Y, et al. ONP-Miner: One-off negative sequential pattern mining[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(3): 37:1-37:24.
[8] GAN W S, LIN J C W, ZHANG J X, et al. Fast utility mining on sequence data[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 487-500.
[9] GAN W S, LIN J C W, ZHANG J X, et al. Utility mining across multi-dimensional sequences[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(5): 82:1-82:24.
[10] 王乐, 王水, 刘胜蓝, 等. 基于索引树的带通配符序列模式挖掘算法[J]. 计算机学报, 2019, 42(3): 554-565.
WANG B, WANG S, LIU S L, et al. An algorithm of mining sequential pattern with wildcards based on index-tree[J]. Chinese Journal of Computers, 2019, 42(3): 554-565.
[11] 武优西, 刘茜, 闫文杰, 等. 无重叠条件严格模式匹配的高效求解算法[J]. 软件学报, 2021, 32(11): 3331-3350.
WU Y X, L X, Y W J, et al. Efficient algorithm for solving strict pattern matching under nonoverlapping condition [J]. Journal of Software, 2021, 32(11): 3331-3350.
[12] LI Y, WANG Z L, LIU J, et al. Mining repetitive negative sequential patterns with gap constraints[J]. ACM Transactions on Knowledge Discovery from Data, 2025, 19(4): 86.
[13] SUN C H, REN X Q, DONG X J, et al. Mining actionable repetitive positive and negative sequential patterns[J]. Knowledge-Based Systems, 2024, 302: 112398.
[14] GIUDICE E, KUIPERS J, MOFFA G. The dual PC algorithm and the role of Gaussianity for structure learning of Bayesian networks[J]. International Journal of Approximate Reasoning, 2023, 161: 108975.
[15] SHTELE E, BERIA P, TOLENTINO S. The evaluation of competition effect on rail fares using the difference-in-difference method through symmetric and lagged spans[J]. Journal of Rail Transport Planning & Management, 2024, 32: 100484.
[16] KE Y H, HUANG J W, LIN J C W, et al. Finding possible promoter binding sites in DNA sequences by sequential patterns mining with specific numbers of gaps[J]. IEEE Transactions on Computational Biology and Bioinformatics, 2020, 18(6): 2459-2470.
[17] 王运, 倪静. 基于用户行为序列的概率矩阵分解推荐算法[J]. 小型微型计算机系统, 2020, 41(7): 1357-1362. WANG Y, NI J. Probability matrix factorization recommendation algorithm based on user behavior sequence[J]. Journal of Chinese Computer Systems, 2020, 41(7): 1357-1362.
[18] LIN J C W, LI T, PIROUZ M, et al. High average-utility sequential pattern mining based on uncertain databases[J]. Knowledge and Information Systems, 2020, 62(3): 1199-1228.
[19] YU Q, HU Y, HU X N, et al. An efficient exact algorithm for planted motif search on large DNA sequence datasets[J]. IEEE Transactions on Computational Biology and Bioinformatics, 2024, 21(5): 1542-1551.
[20] RAO X, JIANG R H, SHANG S, et al. Next point-of-interest recommendation with adaptive graph contrastive learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2025, 37(3):12105-12114.
[21] DING Z J, LI K, CHEN L S, et al. Parallel online similarity join over trajectory streams[C]//Proceedings of the 34th International World Wide Web Conferences, New York, NY: Association for Computing Machinery, 2025: 3426-3437.
[22] 蔡瑞初, 陈薇, 张坤, 等. 基于非时序观察数据的因果关系发现综述[J]. 计算机学报, 2017, 40(06): 1470-1490.
CAI R C, CHEN W, ZHANG K, et al. A survey on non-temporal series, observational data based causal discovery[J]. Chinese Journal of Computers, 2017, 40(06): 1470-1490.
[23] ZOU H, LI B, HAN J G, et al. Counterfactual prediction for outcome-oriented treatments[C]//Proceedings of the 39th International Conference on Machine Learning. New York, NY: Association for Computing Machinery, 2022: 27693-27706.
[24] CAO F Y, WANG Y X, YU K, et al. Causal discovery from unknown interventional datasets over overlapping variable sets[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(12): 7725-7742.
[25] HERNANDEZ GUILLAMET G, LOPEZ SEGUI F, VIDAL-ALABALL J, et al. CauRuler: Causal irredundant association rule miner for complex patient trajectory modelling[J]. Computers in Biology and Medicine, 2023, 155:106636.
[26] Spirtes P, Glymour C. An algorithm for fast recovery of sparse causal graphs[J]. Social Science Computer Review, 1991, 9(1): 62-72.
[27] Zheng X, Aragam B, Ravikumar P K, et al. Dags with no tears: Continuous optimization for structure learning[J]. Advances in Neural Information Processing Systems, 2018, 31 |