[1] PARK J, PATEL K, LEE W H. Recent advances in algal
bloom detection and prediction technology using machine
learning[J/OL]. Science of The Total Environment, 2024,
938: 173546. DOI:10.1016/j.scitotenv.2024.173546.
[2] 刘婷. 面向少样本场景的海洋微藻识别算法的研究
[D/OL]. 大 连 海 洋 大 学 , 2024[2024-04-27].
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CM
FD&dbname=CMFD202401&filename=1023541543.nh.
DOI:10.27821/d.cnki.gdlhy.2023.000227.
Liu, T. (2024). Research on marine microalgae recognition
algorithm for few-shot learning scenarios [Master's thesis,
Dalian Ocean University]. China National Knowledge
Infrastructure
(CNKI).
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CM
FD&dbname=CMFD202401&filename=1023541543.nh.
DOI:10.27821/d.cnki.gdlhy.2023.000227.
[3] LIANG H, NAN J, ZHANG X, et al. A novel on‐line
optical method for algae measurement[J/OL]. Journal of
Chemical Technology & Biotechnology, 2010, 85(10):
1413-1418. DOI:10.1002/jctb.2431.
[4] LILI XU, JIEZHEN XIE, TAO JIANG, et al. Red tide
algae classification using SVM-SNP and semi-supervised
FCM[C/OL]//2010 2nd International Conference on
Education Technology and Computer. Shanghai, China:
IEEE,
2010:
V1-389-V1-392[2024-12-13].
http://ieeexplore.ieee.org/document/5529223/.
DOI:10.1109/ICETC.2010.5529223.
[5] BONATO S, BRETON E, DIDRY M, et al.
Spatio-temporal patterns in phytoplankton assemblages in
inshore–offshore gradients using flow cytometry: A case
study in the eastern English Channel[J/OL]. Journal of
Marine
Systems,
2016,
DOI:10.1016/j.jmarsys.2015.11.009.
156:
76-85.
[6] MALIAKEL P J, ILAGER S, BRANDIC I. Investigating
Energy Efficiency and Performance Trade-offs in LLM
Inference Across Tasks and DVFS Settings[A/OL]. arXiv,
2025[2025-04-30]. http://arxiv.org/abs/2501.08219.
[7] Ning, Z., Vandersteegen, M., et al. (2024). Power
Consumption Benchmark for Embedded AI Inference.
Paper presented at the International Conferences on
Applied
Computing
2024.
Retrieved
from
https://www.researchgate.net/publication/385300510_Pow
er_Consumption_Benchmark_for_Embedded_AI_Inferenc
e
[8] TAN M, PANG R, LE Q V. EfficientDet: Scalable and
Efficient
Object
Detection[C/OL]//2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR).
Seattle,
WA, USA: IEEE, 2020:
10778-10787[2024-12-13].
https://ieeexplore.ieee.org/document/9156454/.
DOI:10.1109/CVPR42600.2020.01079.
[9] 陈锋军, 张新伟, 朱学岩, 等. 基于改进 EfficientDet 的
油橄榄果实成熟度检测[J]. 农业工程学报, 2022, 38(13):
158-166.
Chen, F., Zhang, X., Zhu, X., et al. (2022). Maturity detection of
olive fruits based on improved EfficientDet. Transactions
of the Chinese Society of Agricultural Engineering, 38(13),
158-166.
[10] ZHAO K, ZHANG R, JI J. A Cascaded Model Based on
EfficientDet and YOLACT++ for Instance Segmentation
of Cow Collar ID Tag in an Image[J/OL]. Sensors, 2021,
21(20): 6734. DOI:10.3390/s21206734.
[11] CUI J. Occlusion Robust Wheat Ear Counting AlgorithmBased on Deep Learning[J]. Frontiers in Plant Science,
2021, 12.
[12] ALI M, YASEEN M, ALI S, et al. Deep Learning-Based
Approach for Microscopic Algae Classification with
Grad-CAM Interpretability[J/OL]. Electronics, 2025, 14(3):
442. DOI:10.3390/electronics14030442.
[13] DUNKER S, BOHO D, WÄLDCHEN J, et al. Combining
high-throughput imaging flow cytometry and deep
learning for efficient species and life-cycle stage
identification of phytoplankton[J/OL]. BMC Ecology,
2018, 18(1): 51. DOI:10.1186/s12898-018-0209-5.
[14] RASHEDI K A, ISMAIL M T, AL WADI S, et al.
Multi-Layer
Perceptron-Based
Classification
with
Application to Outlier Detection in Saudi Arabia Stock
Returns[J/OL]. Journal of Risk and Financial Management,
2024, 17(2): 69. DOI:10.3390/jrfm17020069.
[15] ISLAM S, ELMEKKI H, ELSEBAI A, et al. A
Comprehensive Survey on Applications of Transformers
for Deep Learning Tasks[A/OL]. arXiv, 2023[2025-04-30].
http://arxiv.org/abs/2306.07303.
[16] IGLESIAS G, TALAVERA E, DÍAZ-ÁLVAREZ A. A
survey on GANs for computer vision: Recent research,
analysis and taxonomy[J/OL]. Computer Science Review,
2023, 48: 100553. DOI:10.1016/j.cosrev.2023.100553.
[17] CHADEBEC C, ALLASSONNIÈRE S. A Geometric
Perspective on Variational Autoencoders[A/OL]. arXiv,
2022[2025-04-30]. http://arxiv.org/abs/2209.07370.
[18] KIPF T N, WELLING M. Semi-Supervised Classification
with Graph Convolutional Networks[A/OL]. arXiv,
2016[2024-12-13].
https://arxiv.org/abs/1609.02907.
DOI:10.48550/ARXIV.1609.02907.
[19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention
Is
All You Need[A/OL]. arXiv, 2017[2024-12-13].
https://arxiv.org/abs/1706.03762.
DOI:10.48550/ARXIV.1706.03762.
[20] ALVAREZ T, MARTIN Y, PEREZ S, et al. Classification
of
microorganisms
using
techniques[C/OL]//Proceedings
image
2001
processing
International
Conference on Image Processing (Cat. No.01CH37205):
卷 1. Thessaloniki, Greece: IEEE, 2001:
329-332[2024-12-13].
http://ieeexplore.ieee.org/document/959020/.
DOI:10.1109/ICIP.2001.959020.
[21] PROMDAEN S, WATTUYA P, SANEVAS N. Automated
Microalgae
Computer
Image
Science,
Classification[J/OL].
2014,
DOI:10.1016/j.procs.2014.05.182.
29:
Procedia
1981-1992.
[22] 万永清, 张奇志. 深度学习在藻类分类识别中的应用
[J/OL].
传感器世界, 2019, 25(1): 7-12.
DOI:10.16204/j.cnki.sw.2019.01.001.
Wan, Y., & Zhang, Q. (2019). Application of deep learning in
algae classification and recognition. Sensor World, 25(1),
7-12. https://doi.org/10.16204/j.cnki.sw.2019.01.001.
[23] 张志栋. 深度学习在水体藻类实时监测中的应用
[D/OL]. 哈 尔 滨 工 业 大 学 , 2021[2024-04-27].
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CM
FD&dbname=CMFD202101&filename=1020397658.nh.
DOI:10.27061/d.cnki.ghgdu.2020.004252.
Zhang, Z. (2021). Application of deep learning in real-time
monitoring of aquatic algae [Master's thesis, Harbin
Institute of Technology]. China National Knowledge
Infrastructure
(CNKI).
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CM
FD&dbname=CMFD202101&filename=1020397658.nh.
DOI:10.27061/d.cnki.ghgdu.2020.004252.
[24] 陆明洲, 梁钊董, TOMAS N, 等. 基于EfficientDet 网络
的湖羊短时咀嚼行为识别方法[J]. 农业机械学报, 2021,
52(8): 248-254, 426.
Lu, M., Liang, Z., Tomas, N., et al. (2021). Short-term chewing
behavior recognition method of Hu sheep based on
EfficientDet network. Transactions of the Chinese Society
for Agricultural Machinery, 52(8), 248-254, 426.
[25] YASEEN M. What is YOLOv8: An In-Depth Exploration
of the Internal Features of the Next-Generation Object
Detector[A/OL].
arXiv,
http://arxiv.org/abs/2408.15857.
2024[2025-04-26].
[26] CHENG T, SONG L, GE Y, et al. YOLO-World:
Real-Time Open-Vocabulary Object Detection[A/OL].
arXiv, 2024[2025-04-26]. http://arxiv.org/abs/2401.17270.
[27] CHUNG W Y, YOO J H. Remote water quality monitoring
in wide area[J/OL]. Sensors and Actuators B: Chemical,
2015, 217: 51-57. DOI:10.1016/j.snb.2015.01.072.
[28] JABBAR W A, MEI TING T, I. HAMIDUN M F, et al.
Development of LoRaWAN-based IoT system for waterquality monitoring in rural areas[J/OL]. Expert Systems
with Applications, 2024, 242: 122862.
DOI:10.1016/j.eswa.2023.122862.
[29] ZHANG H, CISSE M, DAUPHIN Y N, et al. mixup:
Beyond Empirical Risk Minimization[A/OL]. arXiv,
2017[2024-12-13]. https://arxiv.org/abs/1710.09412.
DOI:10.48550/ARXIV.1710.09412.
[30] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4:
Optimal Speed and Accuracy of Object Detection[A/OL].
arXiv, 2020[2024-12-13]. https://arxiv.org/abs/2004.10934.
DOI:10.48550/ARXIV.2004.10934.
[31] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.
ImageNet classification with deep convolutional neural
networks[J/OL]. Communications of the ACM, 2017,
60(6): 84-90. DOI:10.1145/3065386.
[32] SHU X, LI Y, REN D, et al. Reblurring-Guided Single
Image Defocus Deblurring: A Learning Framework with
Misaligned Training Pairs[A/OL]. arXiv,
2024[2025-04-30]. http://arxiv.org/abs/2409.17792.
[33] STRIEWSKI P, WIRTH B. Elastic 3D–2D Image
Registration[J/OL]. Journal of Mathematical Imaging and
Vision, 2022, 64(5): 443-462.
DOI:10.1007/s10851-022-01083-1.
[34] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional
Block Attention Module[A/OL]. arXiv, 2018[2024-12-13].
https://arxiv.org/abs/1807.06521.
DOI:10.48550/ARXIV.1807.06521.
[35] WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient
Channel Attention for Deep Convolutional Neural
Networks[A/OL]. arXiv, 2019[2024-12-13].
https://arxiv.org/abs/1910.03151.
DOI:10.48550/ARXIV.1910.03151.
[36] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:
Towards Real-Time Object Detection with Region
Proposal Networks[A/OL]. arXiv, 2015[2024-12-13].
https://arxiv.org/abs/1506.01497.
DOI:10.48550/ARXIV.1506.01497.
[37] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for
Dense Object Detection[A/OL]. arXiv, 2017[2024-12-13].
https://arxiv.org/abs/1708.02002.
DOI:10.48550/ARXIV.1708.02002.
[38] ZHU C, HE Y, SAVVIDES M. Feature Selective
Anchor-Free Module for Single-Shot Object
Detection[A/OL]. arXiv, 2019[2024-12-13].
https://arxiv.org/abs/1903.00621.
DOI:10.48550/ARXIV.1903.00621.
[39] ZHOU X, WANG D, KRÄHENBÜHL P. Objects as
Points[A/OL]. arXiv, 2019[2024-12-13].
https://arxiv.org/abs/1904.07850.
DOI:10.48550/ARXIV.1904.07850.
[40] ZHANG S, CHI C, YAO Y, et al. Bridging the Gap
Between Anchor-based and Anchor-free Detection via
Adaptive Training Sample Selection[A/OL]. arXiv,
2019[2024-12-13]. https://arxiv.org/abs/1912.02424.
DOI:10.48550/ARXIV.1912.02424.
[41] Water Security Initiative: Evaluation of the Water Quality
Monitoring Component of the Cincinnati Contamination
Warning System Pilot[J].
[42] REDMON J, DIVVALA S, GIRSHICK R, et al. You Only
Look Once: Unified, Real-Time Object Detection[A/OL].
arXiv, 2015[2024-12-13]. https://arxiv.org/abs/1506.02640.
DOI:10.48550/ARXIV.1506.02640.
[43] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single
Shot MultiBox Detector[J/OL]. 2015[2024-12-13].
https://arxiv.org/abs/1512.02325.
DOI:10.48550/ARXIV.1512.02325.
|