[1] 邓戈文, 魏国辉, 马志庆. 基于深度学习的MRI重建方
法综述[J]. 计算机工程与应用, 2023, 59(20): 67-76.
DENG G W, WEI G H, MA Z Q. Review of deep learning
methods for MRI reconstruction[J]. Computer Engineering
and Applications, 2023, 59(20): 67-76.
[2] GRISWOLD M A, JAKOB P M, NITTKA M, et al.
Partially parallel imaging with localized sensitivities
(PILS)[J]. Magnetic resonance in medicine, 2000, 44(4):
602-609.
[3] DONOHO D L. Compressed sensing[J]. IEEE
Transactions on information theory, 2006, 52(4):
1289-1306.
[4] WANG S, SU Z, YING L, et al. Accelerating magnetic
resonance imaging via deep learning[C]//2016 IEEE 13th
international symposium on biomedical imaging (ISBI).
IEEE, 2016: 514-517.
[5] HUANG J, WU Y, WU H, et al. Fast MRI reconstruction:
How powerful transformers are?[C]//2022 44th annual
international conference of the IEEE engineering in
medicine & biology society (EMBC). IEEE, 2022:
2066-2070.
[6] ZHANG J, GHANEM B. ISTA-Net: Interpretable
optimization-inspired deep network for image compressive
sensing[C]//Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018: 1828-1837.
[7] ZHOU B, SCHLEMPER J, DEY N, et al. Dual-domain
self-supervised learning for accelerated non-Cartesian
MRI reconstruction[J]. Medical Image Analysis, 2022, 81:
102538.
[8] HONG G Q, WEI Y T, MORLEY W A W, et al.
Dual-domain accelerated MRI reconstruction using
transformers
with learning-based undersampling[J].
Computerized Medical Imaging and Graphics, 2023, 106:
102206.
[9] SUN H, LI Y, LI Z, et al. Fourier Convolution Block with
global receptive field for MRI reconstruction[J]. Medical
Image Analysis, 2025, 99: 103349.
[10] ZHANG H, YANG T, WANG H, et al. FDuDoCLNet:
Fully dual-domain contrastive learning network for
parallel MRI reconstruction[J]. Magnetic ResonanceImaging, 2025: 110336.
[11] YANG J, LI X X, LIU F, et al. Fast multi-contrast MRI
acquisition
by optimal sampling of information
complementary to pre-acquired MRI contrast[J]. IEEE
Transactions on Medical Imaging, 2022, 42(5): 1363-1373.
[12] LIU X, CHEN H, YAO C, et al. BTMF-GAN: A
multi-modal MRI fusion generative adversarial network
for brain tumors[J]. Computers in Biology and Medicine,
2023, 157: 106769.
[13] WEI J, YANG G, WANG Z, et al. Misalignment-Resistant
Deep Unfolding Network for multi-modal MRI
super-resolution and reconstruction[J]. Knowledge-Based
Systems, 2024, 296: 111866.
[14] ZHOU X, ZHANG Z, DU H, et al. MLMFNet: A
multi-level modality fusion network for multi-modal
accelerated MRI reconstruction[J]. Magnetic Resonance
Imaging, 2024, 111: 246-255.
[15] HU C, LI C, WANG H, et al. Self-supervised learning for
mri reconstruction with a parallel network training
framework[C]//Medical Image Computing and Computer
Assisted Intervention–MICCAI 2021: 24th International
Conference, Strasbourg, France, September 27–October 1,
2021, Proceedings, Part VI 24. Springer International
Publishing, 2021: 382-391.
[16] ZHOU B, DEY N, SCHLEMPER J, et al. DSFormer: A
dual-domain self-supervised transformer for accelerated
multi-contrast MRI reconstruction[C]//Proceedings of the
IEEE/CVF winter conference on applications of computer
vision. 2023: 4966-4975.
[17] CHEN Y, FAN H, XU B, et al. Drop an octave: Reducing
spatial redundancy in convolutional neural networks with
octave convolution[C]//Proceedings of the IEEE/CVF
international conference on computer vision. 2019:
3435-3444.
[18] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional
block attention module[C]//Proceedings of the European
conference on computer vision (ECCV). 2018: 3-19.
[19] BAKAS S, REYES M, JAKAB A, et al. Identifying the
best machine learning algorithms for brain tumor
segmentation, progression assessment, and overall survival
prediction in the BRATS challenge[J]. arXiv preprint
arXiv:1811.02629, 2018.
[20] RAN M, XIA W, HUANG Y, et al. MD-Recon-Net: a
parallel dual-domain convolutional neural network for
compressed sensing MRI[J]. IEEE Transactions on
Radiation and Plasma Medical Sciences, 2020, 5(1):
120-135.
[21] FENG C M, YAN Y, CHEN G, et al. Multimodal
transformer for accelerated MR imaging[J]. IEEE
Transactions on Medical Imaging, 2022, 42(10):
2804-2816.
[22] LIU Y, PANG Y, LIU X, et al. DIIK-Net: A full-resolution
cross-domain deep interaction convolutional neural
network for MR image reconstruction[J]. Neurocomputing,
2023, 517: 213-222.
[23] ZHAO X, YANG T, LI B, et al. SwinGAN: A dual-domain
Swin Transformer-based generative adversarial network
for MRI reconstruction[J]. Computers in Biology and
Medicine, 2023, 153: 106513.
[24] LEI P, FANG F, ZHANG G, et al. Deep unfolding
convolutional dictionary model for multi-contrast MRI
super-resolution and reconstruction[J]. arXiv preprint
arXiv:2309.01171, 2023.
[25] LI B, WANG Z, YANG Z, et al. Progressive
dual-domain-transfer cycleGAN for unsupervised MRI
reconstruction[J]. Neurocomputing, 2024, 563: 126934.
[26] WOOLSON R F. Wilcoxon signed‐ rank test[J].
Encyclopedia of biostatistics, 2005, 8.
[27] FENG C M, YAN Y, YU K, et al. Exploring separable
attention for multi-contrast MR image super-resolution[J].
IEEE Transactions on Neural Networks and Learning
Systems, 2024.
[28] ZHANG H, WANG Q, SHI J, et al. Deep unfolding
network with spatial alignment for multi-modal mri
reconstruction[J]. Medical Image Analysis, 2025, 99:
103331.
[29] 杨青海, 杨敏. 基于低秩稀疏分解快速算法的动态MRI
重建[J]. 软件工程, 2022, 25(07): 33-36.
YANG Q H, YANG M. Dynamic MRI reconstruction
based on low-rank sparse decomposition fast algorithm[J].
Software Engineering, 2022, 25(07): 33-36. |