[1] 赖厚增.基于特征增强的深度残差超分辨率重建网络研
究[D].江西财经大学,2023.
Lai
Hou zeng. Research on Deep Residual
Super-Resolution Reconstruction Network Based on
Feature Enhancement[D]. Jiangxi University of Finance
and Economics, 2023.
[2] Dong C, Loy C C, He K, et al. Image super-resolution
using deep convolutional networks[J]. IEEE transactions
on pattern analysis and machine intelligence, 2015, 38(2):
295-307.
[3] 郭琳,刘坤虎,马晨阳,等.基于感受野扩展残差注意力网
络的图像超分辨率重建[J].计算机应用,2024,44(05):157
9-1587.
GUO Lin, LIU Kunhu, MA Chenyang, et al.Image
Super-Resolution Reconstruction Based on Receptive Field
Expansion Residual Attention Network[J].Journal of
Computer Applications, 2024, 44(5): 1579-1587.
[4] 黄峰,刘鸿伟,沈英,等.基于多尺度空间自适应注意力网
络的轻量级图像超分辨率方法[J].模式识别与人工智能,
2025,38(01):36-50.
Huang Feng, Liu Hongwei, Shen Ying, et al. Lightweight
Image Super-Resolution Method Based on Multi-Scale
Spatial
Adaptive
Attention
Network[J].
Pattern
Recognition and Artificial Intelligence, 2025, 38(01):
36-50.
[5] 张锡英,王世宇,李金凤,等.轻量级多尺度大核卷积的图
像超分辨率重建网络[J/OL].北京邮电大学学报,1-7[202
5-04-14].
Zhang Xiying, Wang Shiyu, Li Jinfeng, et al. Lightweight
Multi-Scale
Large
Kernel
Convolution
Image
Super-Resolution Reconstruction Network[J/OL]. Journal
of Beijing University of Posts and Telecommunications,
1-7 [2025-04-14].
[6] Ahn N, Kang B, Sohn K A. Fast, accurate, and light
weight super-resolution with cascading residual networ
k[C]//Proceedings of the 15th European Conference on
Computer Vision. Berlin, German: Springer, 2018: 25
6-272.
[7] Hui Z, Gao X, Yang Y, et al. Lightweight image sup
er-resolution with information multi-distillation network
[C]//Proceedings of the 27th ACM International Confe
rence on Multimedia. New York, USA: ACM Press, 2
019: 2024-2032.
[8] Liu J, Tang J, Wu G. Residual feature distillation network
for lightweight image super-resolution[C]// Proceedings of
the 16th European Conference on Computer Vision. Berlin,
German: Springer, 2020: 41-55.
[9] Li Z, Liu Y, Chen X, et al. Blueprint separable resid
ual network for efficient image super-resolution[C]//Pro
ceedings of the IEEE/CVF Conference on Computer V
ision and Pattern Recognition Workshops. Washington
D. C., USA: IEEE Press, 2022: 833-843.
[10] Mao Y, Zhang N, Wang Q, et al. Multi-level dispersi
on residual network for efficient image super-resolutio
n[C]//Proceedings of the IEEE/CVF Conference on Co
mputer Vision and Pattern Recognition Workshops. Wa
shington D. C., USA: IEEE Press, 2023: 1660-1669.
[11] Xie C, Zhang X, Li L, et al. Large kernel distillation
network for efficient single image super-resolution[C]/
/ Proceedings of the IEEE/CVF Conference on Compu
ter Vision and Pattern Recognition Workshops. Washin
gton D. C., USA: IEEE Press, 2023: 1283-1292.
[12] 张豪,马冀,袁江.基于特征层次递进融合的轻量级图像
超分辨率网络[J].计算机系统应用,2025,34(01):118-127.
Zhang Hao, Ma Ji, Yuan Jiang. Lightweight Image
Super-Resolution
Network Based on Progressive
Feature-Level Fusion[J]. Computer Systems Applications,
2025, 34(01): 118-127.
[13] Finder S E, Amoyal R, Treister E, et al. Wavelet con
volutions for large receptive fields[C]//European Confe
rence on Computer Vision. Berlin, German: Springer,
2024: 363-380.
[14] Wang Y, Li Y, Wang G, et al. Multi-scale attention n
etwork for single image super-resolution[C]//Proceeding
s of the IEEE/CVF Conference on Computer Vision a
nd Pattern Recognition Workshops. Washington D. C.,
USA: IEEE Press, 2024: 5950-5960.
[15] Zheng M, Sun L, Dong J, et al. SMFANet: A lightwe
ight self-modulation feature aggregation network for ef
ficient image super-resolution[C]//European Conference
on Computer Vision. Berlin, German: Springer, 2024:
359-375.
[16] Dong C, Loy C C, He K, et al. Image super-resolutio
n using deep convolutional networks[J]. IEEE Transact
ions on Pattern Analysis and Machine Intelligence, 20
15, 38(2): 295-307.
[17] Kim J, Lee J K, Lee K M. Accurate image super-res
olution using very deep convolutional networks[C]//Pro
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. Washington D. C., USA: IE
EE Press, 2016: 1646-1654.
[18] Lim B, Son S, Kim H, et al. Enhanced deep residual
networks for single image super-resolution[C]//Procee
dings of the IEEE Conference on Computer Vision an
d Pattern Recognition Workshops. Washington D. C.,
USA: IEEE Press, 2017: 136-144.
[19] Zhang Y, Li K, Li K, et al. Image super-resolution us
ing very deep residual channel attention networks[C]//
Proceedings of the European conference on computer
vision. Berlin, German: Springer, 2018: 286-301.
[20] Ashish V. Attention is all you need[J]. Advances in n
eural information processing systems, 2017.
[21] Chen H, Wang Y, Guo T, et al. Pre-trained image pro
cessing transformer[C]//Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogniti
on. Nashville, USA: IEEE Pres, 2021: 12299-12310.
[22] Liang J, Cao J, Sun G, et al. Swinir: Image restoratio
n using swin transformer[C]//Proceedings of the IEEE/
CVF International Conference on Computer Vision Wo
rkshops. Montreal, Canada: IEEE Press, 2021: 1833
1844.
[23] Li Y, Zhang Y, Timofte R, et al. NTIRE 2023 challe
nge on efficient super-resolution: Methods and results
[C]//Proceedings of the IEEE/CVF Conference on Co
mputer Vision and Pattern Recognition. Washington D.
C., USA: IEEE Press, 2023: 1922-1960.
[24] Dong C, Loy C C, Tang X. Accelerating the super-re
solution convolutional neural network[C]// Proceedings
of the 14th European Conference on Computer Visio
n. Berlin, German: Springer, 2016: 391-407.
[25] Shi W, Caballero J, Huszár F, et al. Real-time single
image and video super-resolution using an efficient su
b-pixel convolutional neural network[C]//Proceedings of
the IEEE Conference on Computer Vision and Patter
n Recognition. Washington D. C., USA: IEEE Press,
2016: 1874-1883.
[26] Hui Z, Gao X, Yang Y, et al. Lightweight image sup
er-resolution with information multi-distillation network
[C]//Proceedings of the 27th ACM International Confe
rence on Multimedia. New York, USA: ACM Press, 2
019: 2024-2032.
[27] Kong F, Li M, Liu S, et al. Residual local feature ne
twork for efficient super-resolution[C]//Proceedings of t
he IEEE/CVF Conference on Computer Vision and Pa
ttern Recognition. Washington D. C., USA: IEEE Pres
s, 2022: 766-776.
[28] Khan F S, Khan S. Ntire 2022 challenge on efficient
super-resolution: Methods and results[C]//Conference o
n Computer Vision and Pattern Recognition Workshop
s. Washington D. C., USA: IEEE Press, 2022: 1061-1
101.
[29] Yu L, Li X, Li Y, et al. Dipnet: Efficiency distillation
and iterative pruning for image super-resolution[C]//Pr
oceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Washington D. C., US
A: IEEE Press, 2023: 1692-1701.
[30] Deng W, Yuan H, Deng L, et al. Reparameterized res
idual feature network for lightweight image super-resol
ution[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Washingto
n D. C., USA: IEEE Press, 2023: 1712-1721.
[31] Sun B, Zhang Y, Jiang S, et al. Hybrid pixel-unshuffl
ed network for lightweight image super-resolution[C]//
Proceedings of the AAAI Conference on Artificial Int
elligence. Menlo Park,CA:AAAI, 2023, 37(2): 2375-2383.
[32] Wang K, Yang X, Jeon G. Hybrid attention feature re
finement network for lightweight image super-resolutio
n in metaverse immersive display[J]. IEEE Transaction
s on Consumer Electronics, 2023, 70(1): 3232-3244.
[33] Wang Y, Zhang T. Osffnet: Omni-stage feature fusion
network for lightweight image super-resolution[C]//Proc
eedings of the AAAI Conference on Artificial Intellige
nce. Menlo Park,CA:AAAI, 2024, 38(6): 5660-5668.
[34] Bevilacqua M, Roumy A, Guillemot C, et al. Low-co
mplexity single-image super-resolution based on nonne
gative neighbor embedding[EB/OL].[2024-03-05].http://e
prints.imtlucca.it/2412/1/Bevilacqua_2012.pdf.
[35] Zeyde R, Elad M, Protter M. On single image scale-u
p using sparse-representations[C]// Proceedings of the
7th International Conference on Curves and Surfaces.
Berlin, Germany: Springer, 2010:711-730.[36] Martin D, Fowlkes C, Tal D, et al. A database of hu
man segmented natural images and its application to e
valuating segmentation algorithms and measuring ecolo
gical statistics [C]// Proceedings of the 8th IEEE Conf
erence on Computer Vision and Pattern Recognition.
Washington D. C., USA: IEEE Press, 2001: 416-423.
[37] Huang J B, Singh A, Ahuja N. Single image super-re
solution from transformed self-exemplars[C]//Proceedin
gs of the IEEE Conference on Computer Vision and
Pattern Recognition. Washington D. C., USA: IEEE Pr
ess, 2015: 5197-5206.
[38] Matsui Y, Ito K, Aramaki Y, et al. Sketch-based man
ga retrieval using manga109 dataset[J]. Multimedia too
ls and applications, 2017, 76(20): 21811-21838.
[39] Zhang R, Isola P, Efros A A, et al. The Unreasonable
Effectiveness of Deep Features as A Perceptual
Metric[C]//Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018: 586-595.
[40] Ahn N, Kang B, Sohn K A. Fast, Accurate, and
Lightweight Super-resolution with Cascading Residual
Network[C] //Proceedings of the European Conference on
Computer Vision, 2018: 252-268.
[41] Wang L, Dong X, Wang Y, et al. Exploring Sparsity in
Image
Super-resolution
for
Efficient
Inference[C]//Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021:
4917-4926
[42] Li X, Dong J, Tang J, et al. DLGSANet: Lightweight
Dynamic Local and Global Self-attention Networks for
Image Super-resolution[C]//Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2023:
12792-12801. |