[1]田雨萌, 刘志波, 张凯, 等. 云边资源协同中的任务卸载技术综述[J]. 计算机科学与探索, 2023, 17(10): 2325.
Yumeng Tian, Zhibo Liu, Kai Zhang, et al. A Surveyon Task Offloading Techniques in Cloud–EdgeResource Collaboration. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2325.
[2]McEnroe P, Wang S, Liyanage M. A survey on the convergence of edge computing and AI for UAVs: Opportunities and challenges[J]. IEEE Internet of Things Journal, 2022, 9(17): 15435-15459.
[3]Kong X, Wu Y, Wang H, et al. Edge computing for internet of everything: A survey[J]. IEEE Internet of Things Journal, 2022, 9(23): 23472-23485.
[4]Kong L, Tan J, Huang J, et al. Edge-computing-driven internet of things: A survey[J]. ACM Computing Surveys, 2022, 55(8): 1-41.
[5]Kar B, Yahya W, Lin Y D, et al. Offloading using traditional optimization and machine learning in federated cloud–edge–fog systems: A survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 1199-1226.
[6]张微微, 王超, 丁喜莲, 等. 基于无人机影像的农业景观非农生境信息提取[J]. 生态学杂志, 2024, 43(2): 587.
Weiwei Zhang, Chao Wang, Xilian Ding, et al. Extraction of Non Agricultural Habitat Information in Agricultural Landscapes Based on UAV Imagery. Journal of Ecology, 2024, 43(2): 587.
[7]Abkenar F S, Ramezani P, Iranmanesh S, et al. A survey on mobility of edge computing networks in IoT: State-of-the-art, architectures, and challenges[J]. IEEE Communications Surveys & Tutorials, 2022, 24(4): 2329-2365.
[8]Qu L, Xu G, Zeng Z, et al. UAV-assisted RF/FSO relay system for space-air-ground integrated network: A performance analysis[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6211-6225.
[9]张秋平, 孙胜, 刘敏, 等. 面向多边缘设备协作的任务卸载和服务缓存在线联合优化机制[J]. 计算机研究与发展, 2021, 58(6): 1318-1339.
Qiuping Zhang, Sheng Sun, Min Liu, et al. An Online Joint Optimization Mechanism for Task Offloading and Service Caching in Multi Edge Device Collaboration. Journal of Computer Research and Development, 2021, 58(6): 1318–1339.
[10]Xu W, Xiao T, Zhang J, et al. Minimizing the deployment cost of UAVs for delay-sensitive data collection in IoT networks[J]. IEEE/ACM Transactions on Networking, 2021, 30(2): 812-825.
[11]Lin N, Liu Y, Zhao L, et al. An adaptive UAV deployment scheme for emergency networking[J]. IEEE Transactions on Wireless Communications, 2021, 21(4): 2383-2398.
[12]邝祝芳, 陈清林, 李林峰, 等. 基于深度强化学习的多用户边缘计算任务卸载调度与资源分配算法[J]. 计算机学报, 2022, 45(4): 812-824.
Zhufang Kuang, Qinglin Chen, Linfeng Li, et al. A Deep Reinforcement Learning–Based Scheduling and Resource Allocation Algorithm for Multi User Edge Computing Task Offloading. Journal of Computer Science, 2022, 45(4): 812–824.
[13]Su J, Yu S, Li B, et al. Distributed and collective intelligence for computation offloading in aerial edge networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(7): 7516-7526.
[14]Guo H, Zhou X, Wang Y, et al. Achieve load balancing in multi-UAV edge computing IoT networks: A dynamic entry and exit mechanism[J]. IEEE Internet of Things Journal, 2022, 9(19): 18725-18736.
[15]Luo J, Song J, Zheng F C, et al. User-centric UAV deployment and content placement in cache-enabled multi-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5656-5660.
[16]屈毓锛, 秦蓁, 马靖豪, 等. 面向空地协同移动边缘计算的服务布置策略[J]. 计算机学报, 2022, 45(4): 781-796.Yuben Qu, Zhen Qin, Jinghao Ma, et al. A Service Placement Strategy for Air–Ground Collaborative Mobile Edge Computing. Journal of Computer Science, 2022, 45(4): 781–796.
[17]Zhang L, Wen F, Li X. UAVs-assisted edge networks optimization based on constrained particle swarm algorithm[C]//2023 IEEE 23rd International Conference on Communication Technology (ICCT). IEEE, 2023: 1699-1704.
[18]Zhao N, Ye Z, Pei Y, et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6949-6960.
[19]Dai Z, Zhang Y, Zhang W, et al. A multi-agent collaborative environment learning method for UAV deployment and resource allocation[J]. IEEE Transactions on Signal and Information Processing over Networks, 2022, 8: 120-130.
[20]Song Y, Zhao G, Zhang B, et al. An enhanced distributed differential evolution algorithm for portfolio optimization problems[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 106004.
[21]Moazen H, Molaei S, Farzinvash L, et al. PSO-ELPM: PSO with elite learning, enhanced pa rameter updating, and exponential mutation operator[J]. Information Sciences, 2023, 628: 70-91.
[22]Makhadmeh S N, Al-Betar M A, Doush I A, et al. Recent advances in Grey Wolf Optimizer, its versions and applications[J]. Ieee Access, 2023, 12: 22991-23028.
[23]Liu W, Guo Z, Jiang F, et al. Improved WOA and its application in feature selection[J]. Plos one, 2022, 17(5): e0267041.
[24]Li J, Chen Y, Zhao X N, et al. An improved DQN path planning algorithm[J]. The Journal of Supercomputing, 2022, 78(1): 616-639.
[25]Cheng C A, Xie T, Jiang N, et al. Adversarially trained actor critic for offline reinforcement learning[C]//International Conference on Machine Learning. PMLR, 2022: 3852-3878.
[26]Diao X, Zheng J, Cai Y, et al. Fair data allocation and trajectory optimization for UAV-assisted mobile edge computing[J]. IEEE Communications Letters, 2019, 23(12): 2357-2361.
[27]WANG J, LIU K, PAN J. Online UAV-mounted edge server dispatching for mobile- to- mobile edge computing[J]. IEEE Internet of Things Journal, 2019, 7(2): 1375-1386.
[28]Cheng N, Lyu F, Quan W, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117-1129.
[29]Jeong S, Simeone O, Kang J. Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning[J]. IEEE Transactions on Vehicular Technology, 2017, 67(3): 2049-2063.
[30]Nie J, Haykin S. A Q-learning-based dynamic channel assignment technique for mobile communication systems[J]. IEEE Transactions on Vehicular Technology, 1999, 48(5): 1676-1687
|