[1]张辉, 刘远立, 陈春花, 等. 全球性公共卫生危机治理:趋势与重点[J]. 管理科学学报, 2021,24(8): 133-146
Zhang Hui, Liu Yuanli, Chen Chunhua, et al. Governance of Global Public Health Crises: Trends and Priorities [J]. Journal of Management Sciences, 2021, 24(8): 133-146
[2]李青青, 孙守强. 面向突发公共卫生事件的全流程应急决策体系构建[J]. 情报杂志, 2025,44(2): 66-71, 91
Li Qingqing, Sun Shouqiang. Establishing a Full-Process Emergency Decision-Making System for Public Health Emergencies [J]. Journal of Intelligence, 2025, 44(2): 66-71, 91
[3]徐选华, 蔡晨光, 陈晓红. 基于区间模糊数的多阶段冲突型大群体应急决策方法[J]. 运筹与管理, 2015,24(4): 9-15
Xu Xuanhua, Cai Chenguang, Chen Xiaohong. A Multi-stage Conflict-oriented Emergency Decision-making Method for Large Groups Based on Interval Fuzzy Numbers [J]. Operations Research and Management Science, 2015, 24(4): 9-15
[4]Zheng J., Wang Y., Zhang K., et al. A Dynamic Emergency Decision-Making Method Based on Group Decision Making with Uncertainty Information[J]. International Journal of Disaster Risk Science, 2020,11(5): 667-679
[5]Yu L., Lai K. K. A Distance-Based Group Decision-Making Methodology for Multi-Person Multi-Criteria Emergency Decision Support[J]. Decision Support Systems, 2011,51(2): 307-315
[6]Nie H., Zhu J., Tong H., et al. A Cusp Catastrophe Theory Based Multistage Group Decision-Making Method: Addressing Scenario Mutations in Emergencies and Heterogeneous Risk Perceptions of Experts[J]. Engineering Applications of Artificial Intelligence, 2025,153: 110892
[7]Yu S., Xiao J., Du Z., et al. Reliability-Driven Joint Clustering Based on Hybrid Attribute Analysis for Supporting Social Network Large-Scale Decision-Making[J]. Information Sciences, 2025,709: 122062
[8]蒲志强, 易建强, 刘振, 等. 知识和数据协同驱动的群体智能决策方法研究综述[J]. 自动化学报, 2022,48(3): 627-643
Pu Zhiqiang, Yi Jianqiang, Liu Zhen, et al. A Review of Knowledge and Data Co-driven Swarm Intelligence Decision-making Methods [J]. Acta Automatica Sinica, 2022, 48(3): 627-643.
[9]Schwarz A. How Publics Use Social Media to Respond to Blame Games in Crisis Communication: The Love Parade Tragedy in Duisburg 2010[J]. Public Relations Review, 2012,38(3): 430-437
[10]Afflerbach P., Van Dun C., Gimpel H., et al. A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment[J]. Business & Information Systems Engineering, 2021,63(4): 329-348
[11]Shen S., Gong Z., Zhou B., et al. Empathic Network Learning for Multi-Expert Emergency Decision-Making under Incomplete and Inconsistent Information[J]. Information Fusion, 2025,117: 102844
[12]徐选华, 朱昱承. 数据驱动的大群体应急决策公众专家动态协同方法[J]. 系统工程与电子技术, 2023,45(12): 3875-3886
Xu Xuanhua, Zhu Yucheng. A Data-Driven Dynamic Collaborative Approach for Public Expert Emergency Decision-Making in Large Groups [J]. Systems Engineering and Electronics, 2023,45(12): 3875-3886
[13]Zhu Y., Xu X., Pan B. A Method for the Dynamic Collaboration of the Public and Experts in Large-Scale Group Emergency Decision-Making: Using Social Media Data to Evaluate the Decision-Making Quality[J]. Computers & Industrial Engineering, 2023,176: 108943
[14]陈兆芳, 黄鹏城, 黄文翰. 社会网络环境下双驱动DEMATEL的群智知识融合应急决策方法[J]. 安全与环境学报, 2024,24(6): 2336-2347
Chen Zhaofang, Huang Pengcheng, Huang Wenhan. A Crowdsourced Knowledge Fusion Emergency Decision-Making Method Based on Dual-Driven DEMATEL in Social Network Environments [J]. Journal of Safety and Environment, 2024, 24(6): 2336-2347.
[15]徐选华, 黄丽, 陈晓红. 基于共词网络的群智知识挖掘方法——在应急决策中应用[J]. 管理科学学报, 2023,26(5): 121-137
Xu Xuanhua, Huang Li, Chen Xiaohong. A Crowdsourced Knowledge Mining Approach Based on Co-occurrence Networks: Application in Emergency Decision-Making [J]. Journal of Management Sciences, 2023, 26(5): 121-137.
[16]Arslan M., Mahdjoubi L., Munawar S. Driving Sustainable Energy Transitions with a Multi-Source RAG-LLM System[J]. Energy and Buildings, 2024,324: 114827
[17]Guu K., Lee K., Tung Z., et al. REALM: Retrieval-Augmented Language Model Pre-Training[J]
[18]李国杰. DeepSeek引发的AI发展路径思考[J]. 科技导报, 2025,43(3): 14-19
Li Guojie. Reflections on AI Development Pathways Inspired by DeepSeek [J]. Science and Technology Herald, 2025,43(3): 14-19
[19]张鹤译, 王鑫, 韩立帆, 等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023,17(10): 2377-2388
Zhang Heyi, Wang Xin, Han Lifan, et al. Research on Question-Answering Systems Integrating Large Language Models with Knowledge Graphs [J]. Computer Science and Exploration, 2023, 17(10): 2377-2388
[20]徐月梅, 胡玲, 赵佳艺, 等. 大语言模型的技术应用前景与风险挑战[J]. 计算机应用, 2024,44(6): 1655-1662
Xu Yuemei, Hu Ling, Zhao Jiayi, et al. Technical Application Prospects and Risk Challenges of Large Language Models [J]. Computer Applications, 2024,44(6): 1655-1662
[21]魏宏程, 杨建林. 大语言模型+检索增强方法的关键技术及其在情报任务中的应用流程[J]. 情报理论与实践, 2025,48(3): 178-188, 206
Wei Hongcheng, Yang Jianlin. Key Technologies of Large Language Models Combined with Retrieval-Enhanced Methods and Their Application Process in Intelligence Tasks [J]. Theory and Practice of Intelligence, 2025,48(3): 178-188, 206
[22] 刘倩倩, 刘圣婴, 刘炜. 图书情报领域大模型的应用模式和数据治理[J]. 图书馆杂志, 2023,42(12): 22-35
Liu Qianqian, Liu Shengying, Liu Wei. Application Models and Data Governance of Large Language Models in Library and Information Science [J]. Library Journal, 2023,42(12): 22-35
[23] White J., Fu Q., Hays S., et al. A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT[EB]. arXiv, 2023
[24]王润周, 张新生, 王明虎, 等. 基于混合检索增强生成大语言模型的网络舆情多任务分析[J]. 情报杂志, 2024: 1-14
Wang Runzhou, Zhang Xinsheng, Wang Minghu, et al. Multi-task Analysis of Online Public Sentiment Based on Retrieval-Enhanced Generation Using Large Language Models [J]. Journal of Intelligence, 2024: 1-14
[25]刘雪颖, 云静, 李博, 等. 基于大型语言模型的检索增强生成综述[J]. 计算机工程与应用, 2025: 1-31
Liu Xueying, Yun Jing, Li Bo, et al. A Review of Retrieval-Enhanced Generation Based on Large Language Models [J]. Computer Engineering and Applications, 2025: 1-31
[26]黄宁泊, 高建伟, 许传博, 等. 基于经验挖掘与混合语言的海上风电制氢加氢港口选址研究[J]. 中国电力, 2024,57(9): 113-123
Huang Ningbo, Gao Jianwei, Xu Chuanbo, et al. Research on Site Selection for Offshore Wind Power Hydrogen Production and Hydrogen Refuelling Ports Based on Empirical Mining and Mixed Languages [J]. China Electric Power, 2024,57(9): 113-123
[27]Gomes, L. F. A. M., and M. M. P. P. Lima. "Todim: Basics and application to multicriteria ranking of projects with environmental impact." Foundations of Computing and Decision Sciences 16.3-4 (1991): 1-16.
[28]河南郑州“7•20”特大暴雨灾害调查报告公布[J]. 中国应急管理, 2022(2): 4
Investigation Report on the Severe Flooding in Zhengzhou, Henan Province on 20 July 2021 [J]. China Emergency Management, 2022(2): 4
[29]何多魁, 唐中君, 陈倩倩, 等. 微调大语言模型驱动的短文本动态主题建模方法[J]. 数据分析与知识发现, 2025: 1-28
He Duokui, Tang Zhongjun, Chen Qianqian, et al. A Micro-Tuning Approach for Dynamic Topic Modelling of Short Texts Driven by Large Language Models [J]. Data Analysis and Knowledge Discovery, 2025: 1-28
|