[1]World Heart Federation. (2023). World Heart Report 2023: Confronting the World's Number One Killer. World Heart Federation. Geneva, Switzerland.
[2]宋鑫海,韩京宇,郎杭,等.基于隐马尔科夫模型的滑动窗口投票策略的QRS波群形态识别[J].计算机工程与科学,2024,46(02):272-281.
Song Xinhai,Han Jingyu,Lang Hang.A sliding window voting strategy based on hidden Markov model formor-phology detection of QRS complex [J]. Computer En-gineering and Science.
[3]苏丽,赵国良,李东明.心电信号QRS波群检测算法研究[J].哈尔滨工程大学学报,2005,(04):513-517.
Su Li, Zhao Guoliang, Li Dongming. Research on QRS Complex Detection Algorithm in Electrocardiogram Sig-nals. Journal of Harbin Engineering University, 2005(04): 513-517.
[4]马建红,段豪,韩颖.心电信号中特征波分割方法研究综述[J].郑州大学学报(理学版),2023,55(02):79-87.DOI:10.13705/j.issn.1671-6841.2022103.
Ma Jianhong, Duan Hao, Han Ying. A Comprehensive Review of Feature Wave Segmentation Methods in Elec-trocardiogram Signals. Journal of Zhengzhou University (Natural Sciences Edition), 2023, 55(02): 79-87. DOI: 10.13705/j.issn.1671-6841.2022103.
[5]Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500.
[6]Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[7]Hannun A Y, Rajpurkar P, Haghpanahi M, et al. Cardiolo-gist-level arrhythmia detection and classification in am-bulatory electrocardiograms using a deep neural network[J]. Nature medicine, 2019, 25(1): 65-69.
[8]Hochreiter S,Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[9]Chung J, Gulcehre C, Cho K H, et al.Empirical evaluation of gated recurrent neural networks on sequencemodeling[J]. arXiv preprint arXiv:1412.3555, 2014.
[10]Schwab P, Scebba G C, Zhang J, et al. Beat by beat:Classifying cardiac arrhythmias with recurrent neural networks[C] // 2017 computing in cardiology (CinC). IEEE, 2017: 1-4.
[11]Akan T, Alp S, Bhuiyan MAN. ECGformer:Leveraging transformer for ECG heartbeat arrhythmia classifica-tion[C]//2023 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2023: 1412-1417.
[12]Yao Q, Wang R, Fan X, et al. Multi-class arrhythmia-detection from 12-lead varied-length ECG using atten-tion-based time-incremental convolutional neural net-work[J]. Information Fusion, 2020, 53: 174-182.
[13]El-Ghaish H, Eldele E. ECGTransForm:Empowering adaptive ECG arrhythmia classification framework with bidirectional transformer[J]. Biomedical Signal Processing and Control, 2024, 89: 105714.
[14]Moody G B, Mark R G. The impact of the MIT-BIH arrhythmia database[J]. IEEE engineering in medicine and biology magazine, 2001, 20(3): 45-50.
[15]Pan X, Ge C, Lu R, et al. On the integration of self-attention and convolution[C]//Proceedings of the IEEE/C-VF conference on computer vision and pattern recognit-ion. 2022: 815-825.
[16]Liu F, Liu C, Zhao L, et al. An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection[J]. Journal of Medical Imaging and Health Informatics, 2018, 8(7): 1368-1373.
[17]Zheng J, Zhang J, Danioko S, et al. A 12-lead electrocar-diogram database for arrhythmia research covering more than 10,000 patients[J]. Scientific data, 2020, 7(1): 48.
[18]Wang Z, Yan W, Oates T.Time series classification from scratch with deep neural networks:A strong base-line[C]//2017 International joint conference on neural networks (IJCNN). IEEE, 2017: 1578-1585.
[19]Howard A, Sandler M, Chu G, et al. Searching for mo-bilenetv3[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 1314-1324.
[20]Ismail Fawaz H, Lucas B, Forestier G, et al. Inceptiontime: Finding alexnet for time series classification[J]. Data Mining and Knowledge Discovery, 2020, 34(6): 1936-1962
[21]Yang S, Lian C, Zeng Z, et al. A multi-view multi-scale neural network for multi-label ECG classificatio-n[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7(3): 648-660.
[22]Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv:2010.11929, 2020.
[23]Liu Z, Hu H, Lin Y, et al. Swin transformer v2: Scaling up capacity and resolution[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 12009-12019.
[24]Liu Y, Dong L, Zhang B, et al. Real time ECG classifica-tion system based on DWT and SVM[C]//2020 IEEE In-ternational Conference on Integrated Circuits, Technologies and Applications (ICTA). IEEE, 2020: 155-156.
[25]Kung B H, Hu P Y, Huang C C, et al. An efficient ECG classification system using resource-saving architecture and random forest[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25(6): 1904-1914.
|