[1] 刘雨蒙,赵怡婧,王碧聪,等. 结构化数据库查询语言智能合成技术研究进展[J]. 计算机科学, 2024,51(7):40-48. Liu Y M, Zhao Y J, Wang B C, et al.Advances in SQL Intelligent Synthesis Technology[J]. Computer Science, 2024,51(7):40-48. (in Chinese)
[2] Qin B, Hui B, Wang L, et al. A survey on text-to-sql parsing: Concepts, methods, and future directions[J]. arXiv preprint arXiv:2208.13629, 2022.
[3] Pourreza M, Rafiei D, Feng Y, et al. Sql-encoder: Improving nl2sql in-context learning through a context-aware encoder[J]. arXiv preprint arXiv: 2403.16204, 2024.
[4] Guo J, Zhan Z, Gao Y, et al. Towards complex text-to-sql in cross-domain database with intermediate representation[J]. arXiv preprint arXiv:1905.08205, 2019.
[5] Shi L, Tang Z, Zhang N, et al. A survey on employing large language models for text-to-sql tasks[J]. arXiv preprint arXiv:2407.15186, 2024.
[6] Zhang B, Ye Y, Du G, et al. Benchmarking the text-to-sql capability of large language models: A comprehensive evaluation[J]. arXiv preprint arXiv:2403.02951, 2024.
[7] Hong Z, Yuan Z, Zhang Q, et al. Next-generation database interfaces: A survey of llm-based text-to-sql[J]. arXiv preprint arXiv:2406.08426, 2024.
[8] Chang Y, Wang X, Wang J, et al. A survey on evaluation of large language models[J]. ACM transactions on intelligent systems and technology, 2024, 15(3): 1-45.
[9] Xie Y, Jin X, Xie T, et al. Decomposition for Enhancing Attention: Improving LLM-based Text-to-SQL through Workflow Paradigm[C]//Findings of the Association for Computational Linguistics ACL 2024. 2024: 10796-10816.
[10] Tai C Y, Chen Z, Zhang T, et al. Exploring Chain of Thought Style Prompting for Text-to-SQL[C]//Proce- edings of the 2023 Conference on Empirical Methods in Natural Language Processing. 2023: 5376-5393.
[11] Zhuang A, Zhang G, Zheng T, et al. Structlm: Towards building generalist models for structured knowledge grounding[J]. arXiv preprint arXiv:2402.16671, 2024.
[12] Roziere B, Gehring J, Gloeckle F, et al. Code llama: Open foundation models for code[J]. arXiv preprint arXiv:2308.12950, 2023.
[13] Li B, Luo Y, Chai C, et al. The Dawn of Natural Language to SQL: Are We Fully Ready?[J]. Proceedings of the VLDB Endowment, 2024, 17(11): 3318-3331.
[14] Gao Y, Liu Y, Li X, et al. Xiyan-sql: A multi-generator ensemble framework for text-to-sql[J]. arXiv preprint arXiv:2411.08599, 2024.
[15] Chen X, Wang T, Qiu T, et al. Open-sql framework: Enhancing text-to-sql on open-source large language models[J]. arXiv preprint arXiv:2405.06674, 2024.
[16] Nan L, Zhao Y, Zou W, et al. Enhancing text-to-SQL capabilities of large language models: A study on prompt design strategies[C]//Findings of the Association for Computational Linguistics: EMNLP 2023. 2023: 14935-14956.
[17] 于晓昕,何东,叶子铭,等. 一种利用词典扩展数据库模式信息的Text2SQL方法[J]. 四川大学学报(自然科学版), 2024,61(1):78-88.
Yu X Q, He D, Ye Z M, et al.A Text2SQL method utilizing database schema information expanded by dictionary[J]. Journal of Sichuan University(Natural Science Edition), 2024,61(1):78-88. (in Chinese)
[18] Gao D, Wang H, Li Y, et al. Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation[J]. Proceedings of the VLDB Endowment, 2024, 17(5): 1132-1145.
[19] Li J, Hui B, Qu G, et al. Can llm already serve as a database interface? a big bench for large-scale database grounded text-to-sqls[J]. Advances in Neural Information Processing Systems, 2023, 36: 42330-42357.
[20] 刘洋, 廖薇, 徐震. 融合表字段的NL2SQL多任务学习方法 [J]. 计算机应用研究, 2024, 41 (9): 2800-2804. Liu Y, Liao W, Xu Z. Multi-task learning method for NL2SQL with fused table columns [J]. Application Research of Computers, 2024, 41 (9): 2800-2804. (in Chinese)
[21] Shi J, Xu B, Liang J, et al. Gen-SQL: Efficient Text-to-SQL by bridging natural language question anddatabase schema with pseudo-schema[C]//Proceedings of the 31st International Conference on Computational Linguistics. 2025: 3794-3807.
[22] Qu G, Li J, Li B, et al. Before Generation, Align it! A Novel and Effective Strategy for Mitigating Hallucinations in Text-to-SQL Generation[C]//Findings of the Association for Computational Linguistics ACL 2024. 2024: 5456-5471.
[23] Pourreza M, Rafiei D. Din-sql: Decomposed in-context learning of text-to-sql with self-correction[J]. Advances in Neural Information Processing Systems, 2023, 36: 36339-36348.
[24] Yu T, Zhang R, Yang K, et al. Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 3911-3921.
[25] Thorpe D G, Duberstein A J, Kinsey I A. Dubo-sql: Diverse retrieval-augmented generation and fine tuning for text-to-sql[J]. arXiv preprint arXiv:2404.12560, 2024.
[26] Hu E J, Shen Y, Wallis P, et al. Lora: Low-rank adaptation of large language models[J]. ICLR, 2022, 1(2): 3.
[27] Yang A, Yang B, Zhang B, et al. Qwen2. 5 technical report[J]. arXiv preprint arXiv:2412.15115, 2024.
[28] Touvron H, Lavril T, Izacard G, et al. Llama: Open and efficient foundation language models[J]. arXiv preprint arXiv:2302.13971, 2023.
[29] Wang W, Wei F, Dong L, et al. Minilm: Deep self-attention distillation for task-agnostic compression of pre-trained transformers[J]. Advances in neural information processing systems, 2020, 33: 5776-5788.
[30] Deng X, Hassan A, Meek C, et al. Structure-Grounded Pretraining for Text-to-SQL[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021: 1337-1350.
[31] Choi D H, Shin M C, Kim E G, et al. Ryansql: Recursively applying sketch-based slot fillings for complex text-to-sql in cross-domain databases[J]. Computational Linguistics, 2021, 47(2): 309-332.
[32] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers). 2019: 4171-4186.
|