[1]Gao L, Li J . E‐Commerce Personalized Recommen-dation Model Based on Semantic Sentiment[J]. Mobile Information Systems, 2022, 2022(1): 7246802.
[2]王曙燕, 郭睿涵, 孙家泽. 基于图对比学习的MOOC推荐方法[J]. 计算机工程, 2023, 49(1): 57-64,72. WANG Shuyan, GUO Ruihan, SUN Jiaze. Recommen-dation Method for MOOC Based on Graph Contrastive Learning[J]. Computer Engineering, 2023, 49(1): 57-64,72.
[3]IDRISSI N, Zellou A. A systematic literature review of sparsity issues in recommender systems[J]. Social Net-work Analysis and Mining, 2020, 10(1): 15.
[4]Yuan H, Hernandez AA. User Cold Start Problem in Recommendation Systems: A Systematic Review[J]. IEEE Access, 2023, 11: 136958-136977.
[5]Zang T, Zhu Y, Liu H, et al. A survey on cross-domain recommendation: taxonomies, methods, and future di-rections[J]. ACM Transactions on Information Systems, 2022, 41(2): 1-39.
[6]Zhu F,Chen C,Wang Y, et al. Dtcdr: A framework for dual-target cross-domain recommendation[C]// Pro-ceedings of the 28th ACM international conference on information and knowledge management. New York: ACM, 2019: 1533-1542.
[7]Hu G N, Zhang Y, Yang Q. Conet: Collaborative cross networks for cross-domain recommendation[C]// Pro-ceedings of the 27th ACM international conference on information and knowledge management. New York: ACM, 2018: 667-676.
[8]Li P, Tuzhilin A. Ddtcdr: Deep dual transfer cross domain recommendation[C]//Proceedings of the 13th international conference on web search and data mining. New York: ACM, 2020: 331-339.
[9]Zhao C, Li C L, Fu C. Cross-domain recommendation via preference propagation graphnet[C]//Proceedings of the 28th ACM international conference on information and knowledge management. New York: ACM, 2019: 2165-2168.
[10]Liu M, Li J, Li G et al. Cross domain recommendation via bi-directional transfer graph collaborative filtering networks[C]//Proceedings of the 29th ACM international conference on information & knowledge management. New York: ACM, 2020: 805-814.
[11]Wang X, Chen H, Zhou Y, et al. Disentangled represen-tation learning for recommendation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1): 408-424.
[12]蔡瑞初, 吴逢竹, 李梓健. 基于图生成过程的跨领域推荐 [J]. 计算机应用研究, 2022, 39 (8): 2333-2339. Cai Ruichu, Wu Fengzhu, Li Zijian. Cross-domain rec-ommendation under graph generation process [J]. Application Research of Computers, 2022, 39 (8): 2333-2339.
[13]Kong M, Hou M, Zhao S, et al. DADIN: Domain Ad-versarial Deep Interest Network for cross domain rec-ommender systems[J]. Expert Systems with Applications, 2024, 243: 122880.
[14]Zhang R, Zang T, Zhu Y, et al. Disentangled contrastive learning for cross-domain recommendation[C] // Inter-national Conference on Database Systems for Advanced Applications. Cham: Springer Nature Switzerland, 2023: 163-178.
[15]Xiao S, Zhu D, Tang C, et al. CATCL: Joint cross-attention transfer and contrastive learning for cross-domain recommendation[C]//International Con-ference on Database Systems for Advanced Applications. Cham: Springer Nature Switzerland, 2023: 446-461.
[16]Shi C, Li Y, Zhang J, et al. A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 29(1): 17-37.
[17]Zhu F, Wang Y, Chen C, et al. A graphical and attentional framework for dual-target cross-domain recommen-dation[C]//IJCAI. 2020, 21: 39.
[18]Cui Q, Wei T, Zhang Y, et al. HeroGRAPH: A Hetero-geneous Graph Framework for Multi-Target Cross-Domain Recommendation[C]//Proceedings of the Workshop on Online Recommender Systems and User Modeling. 2020.
[19]Zhu G, Zhu Z, Chen H, et al. Hagnn: Hybrid aggregation for heterogeneous graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024.
[20]吴国栋,查志康,涂立静,等.图神经网络推荐研究进展[J].智能系统学报,2020,15(01):14-24.WU Guodong,ZHA Zhikang,TU Lijing,et al.Research ad-vances in graph neural network recommenda-tion[J].CAAI Transactions on Intelligent Sys-tems,2020,15(1):14-24.
[21]Ying R, He R, Chen K, et al. Graph convolutional neural networks for web-scale recommender systems[C]// Pro-ceedings of the 24th ACM SIGKDD international con-ference on knowledge discovery & data mining. New York: ACM, 2018: 974-983.
[22]Wang X, He X, Wang M, et al. Neural graph collabora-tive filtering[C]//Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval. New York: ACM, 2019: 165-174.
[23]Schlichtkrull M, Kipf T N, Bloem P, et al. Modelingrelational data with graph convolutional networks[C]//The semantic web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15. Springer International Publishing, 2018: 593-607.
[24]Jin B, Gao C, He X, et al. Multi-behavior recommenda-tion with graph convolutional networks[C]//Proceedings of the 43rd international ACM SIGIR conference on re-search and development in information retrieval. New York: ACM, 2020: 659-668.
[25]Wang W, Zhang W, Liu S, et al. Beyond clicks: Modeling multi-relational item graph for session-based target behavior prediction[C]//Proceedings of the web confer-ence 2020. New York: ACM, 2020: 3056-3066.
[26]Liu X, Feng H, Zhang X, et al. Graph contrast learning for recommendation based on relational graph convolu-tional neural network[J]. Journal of King Saud Univer-sity-Computer and Information Sciences, 2024, 36(8): 102168.
[27]Gonzalez-Garcia A, Van De Weijer J, Bengio Y. Im-age-to-image translation fo r cross-domain disentangle-ment[J]. Advances in neural information processing systems, 2018, 31.
[28]Bengio Y, Courville A, Vincent P. Representation learn-ing: A review and new perspectives[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(8): 1798-1828.
[29]Zhang Y, Zhu Z, He Y, et al. Content-collaborative dis-entanglement representation learning for enhanced recommendation[C]//Proceedings of the 14th ACM conference on recommender systems. New York: ACM, 2020: 43-52.
[30]Ma J, Zhou C, Yang H, et al. Disentangle self-supervision in sequential recommenders[C]// Pro-ceedings of the 26th ACM SIGKDD international con-ference on knowledge discovery & data mining. New York: ACM, 2020: 1230-1240.
[31]Zheng Y, Gao C, Li X, et al. Disentangling user interest and conformity for recommendation with causal embed-ding[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 2980-2991.
[32]Zheng Y, Gao C, Chang J, et al. Disentangling long and short-term interests for recommendation[C] // Proceed-ings of the ACM web conference 2022. New York: ACM, 2022: 1772-1783.
[33]Cao J, Lin X, Cong X, et al. Disencdr: Learning disen-tangled representations for cross-domain recommenda-tion[C]//Proceedings of the 45th International ACM SIGIR conference on research and development in in-formation retrieval.New York: ACM, 2022: 654-664.
[34]Zhang Y, Cheng Z, Liu F, et al. Decoupled do-main-specific and domain-conditional representation learning for cross-domain recommendation[J]. Infor-mation Processing & Management, 2024, 61(3): 103689.
[35]Lu K, Zhang Q, Hughes D, et al. Amt-cdr: A deep ad-versarial multi-channel transfer network for cross-domain recommendation[J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15(4): 1-26.
[36]Krichene W, Rendle S. On Sampled Metrics for Item Recommendation[J]. Communications of the ACM, 2022, 65(4): 75-83.
[37]Man T, Shen H, Jin X, et al. Cross-domain recommen-dation: An embedding and mapping approach[C]// Pro-ceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI). Melbourne, Australia, August, 2017: 2464-2470
[38]Zhu F, Wang Y, Chen C C, et al. A Deep Framework for Cross-Domain and Cross-System Recommendations [C]//Proceedings of the 27th International Joint Confer-ence on Artificial Intelligence (IJCAI). Stockholm, Sweden, July, 2018: 3711-3717
[39]Zhu J, Wang Y, Zhu F, et al. Domain disentanglement with interpolative data augmentation for dual-target cross-domain recommendation[C]//Proceedings of the 17th ACM Conference on Recommender Systems. New York: ACM,2023: 515-527.
[40]Zhang Y, Cheng Z, Liu F, et al. Decoupled do-main-specific and domain-conditional representation learning for cross-domain recommendation[J]. Infor-mation Processing & Management, 2024, 61(3): 103689-103702.
[41]Zhao Y, Ju J, Gong J, et al. Cross-domain recommenda-tion via adaptive bi-directional transfer graph neural networks[J]. Knowledge and Information Systems, 2025, 67(1): 579-602.
|