[1] 李密, 林旭, 陈佳期, 等. 智能巡检机器人应用现状及问题探析[J]. 科技创新与应用, 2022, 12(27): 189-192.
LI M, LIN X, CHEN J, et al. Intelligent inspection robot application status quo and problem analysis[J]. Science and technology innovation and application, 2022, 12(27): 189-192.
[2] 刘严, 刘吴欢. 人工智能下的输电线路无人机巡检技术[J]. 电工技术, 2024(S2): 141-143.
LIU Y, LIU W H. Research on Unmanned Aerial Vehicle Inspection Technology for Transmission Lines Under Artificial Intelligence[J]. Electrical technology, 2024(S2): 141-143.
[3] Yang L, Fan J, Liu Y, et al. A review on state-of-the-art power line inspection techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9350-9365.
[4] Lv X L, Chiang H D. Visual clustering network-based intelligent power lines inspection system[J]. Engineering Applications of Artificial Intelligence, 2024, 129: 107572.
[5] 倪源松, 韩军, 邹小燕, et al. 两阶段自适应分块输电线路螺栓缺陷检测方法[J]. 计算机工程 1-11[2025-05-28].
MI YS, HAN J, ZOU XY, et al. Two-stage adaptive block transmission line bolt defect detection method[J]. Computer Engineering, 1-11[2025-05-28].
[6] 张焕龙, 齐企业, 张杰. 基于改进 YOLOv5 的输电线路鸟巢检测方法研究[J]. 电力系统保护与控制, 2023, 51(2): 151-159.
ZHANG H L, QI Q Y, ZHANG J. Bird nest detection method for transmission lines based on improved YOLOv5[J]. Power System Protection and Control, 2023, 51(2): 151-159.
[7] He Z, Yang W, Liu Y, et al. Insulator defect detection based on YOLOv8s-SwinT[J]. Information, 2024, 15(4): 206.
[8] Misra I, Girdhar R, Joulin A. An end-to-end transformer model for 3d object detection[C]. Proceedings of the IEEE/CVF international conference on computer vision. 2021: 2906-2917.
[9] Han K, Xiao A, Wu E, et al. Transformer in transformer[J]. Advances in neural information processing systems, 2021, 34: 15908-15919.
[10] Pandey G K, Srivastava S. ResNet-18 comparative analysis of various activation functions for image classification[C]. 2023 International Conference on Inventive Computation Technologies (ICICT), 2023: 595-601.
[11] Finder S E, Amoyal R, Treister E, et al. Wavelet convolutions for large receptive fields[C]. European Conference on Computer Vision, 2024: 363-380.
[12] Zhao Y, Lv W, Xu S, et al. Detrs beat yolos on real-time object detection[C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2024: 16965-16974.
[13] 胡清翔, 饶文碧, 熊盛武. 面向无人机遥感场景的轻量级小目标检测算法[J]. 计算机工程, 2023, 49(12), 169-177.
HU QX, RAO WB, XIONG SW. Lightweight Small Object Detection Algorithm for UAV Remote Sensing Scene[J]. Computer Engineering, 2023, 49(12), 169-177.
[14] Chen L, Li G, Zhang S, et al. YOLO-SAG: An improved wildlife object detection algorithm based on YOLOv8n[J]. Ecological Informatics, 2024, 83: 102791.
[15] Tang S, Yan W. Utilizing RT-DETR model for fruit calorie estimation from digital images[J]. Information, 2024, 15(8): 469.
[16] Zhu M, Kong E. Multi-scale fusion uncrewed aerial vehicle detection based on RT-DETR[J]. Electronics, 2024, 13(8): 1489.
[17] 施宇, 王乐, 姚叶鹏,等. 基于强化特征金字塔和聚焦损失的小目标检测[J]. 计算机科学与探索, 2025, 19(03): 693-702.
SHI Y, WANG L, YAO Y P, et al. Small Object Detection Based on Enhanced Feature Pyramid and Focal-AIoU Loss[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(03): 693-702.
[18] 范焱, 刘乔, 袁笛,等. 空域和频域特征解耦的红外与可见光图像融合[J]. 红外与激光工程, 2024, 53(08): 222-237.
FAN Y, LIU Q, YUAN D, et al. Spatial and frequency domain feature decoupling for infrared and visible image fusion[J]. Infrared and Laser Engineering, 2024, 53(08): 222-237.
[19] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8759-8768.
[20] Tan M, Pang R, Le Q V. EfficientDet: Scalable and Efficient Object Detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 10778-10787.
[21] Yang Z, Guan Q, Zhao K, et al. Multi-branch Auxiliary Fusion YOLO with Re-parameterization Heterogeneous Convolutional for Accurate Object Detection[C]. Chinese Conference on Pattern Recognition and Computer Vision (PRCV), 2024: 492-505.
[22] Zhang X, Song Y, Song T, et al. LDConv: Linear deformable convolution for improving convolutional neural networks[J]. Image and Vision Computing, 2024, 149: 105190.
[23] Tong Z, Chen Y, Xu Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv preprint arXiv:2301.10051, 2023.
[24] Lin T Y, Goyal P, Girshick R, et al. Focal Loss for Dense Object Detection[C]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 2999-3007.
[25] 王子玉, 陈佳星, 白博文,等. 基于改进YOLOv5s的绝缘子缺陷检测方法[J]. 机电工程技术, 2024, 53(08): 197-200.
WANG Z Y, CHEN J X, BAI B W, et al. Insulator Defect Detection Method Based on Improved YOLOv5s[J]. Mechanical and electrical engineering technology, 2024, 53(08): 197-200.
[26] 马学森, 马吉, 蒋功辉, 等. 基于注意力机制和多尺度特征融合的绝缘子缺陷检测方法[J]. 南京大学学报 (自然科学版), 2022, 58(6): 1020-1029.
MA XS, MA J, JIANG GH, et al. Insulator defect detection method based on attention mechanism and multi⁃scale feature fusion[J] Journal of Nanjing University (Natural Sciences), 2022, 58(6): 1020-1029.
[27] 赵霖, 王素珍, 邵明伟,等. 基于改进YOLOv5的输电线路鸟巢缺陷检测方法[J]. 电子测量技术, 2023, 46(03): 157-165.
ZHAO W, WANG S Z, SHAO M W, et al. Improved YOLOv5-based bird's nest defect detection method for transmission lines[J]. Electronic measurement technology, 2023, 46(03): 157-165.
[28] Zhu X, Su W, Lu L, et al. Deformable detr: Deformable
[29] Roh B, Shin J W, Shin W, et al. Sparse detr: Efficient end-to-end object detection with learnable sparsity[J]. arXiv preprint arXiv:2111.14330, 2021.
|