[1] Hou W, Li W, Li P. Fault diagnosis of the autonomous driving perception system based on information fusion[J]. Sensors, 2023, 23(11).
[2] 王海, 张桂荣, 罗彤, 等. 面向自动驾驶道路场景中异常案例的多模态数据挖掘算法[J]. 汽车工程, 2024, 46(07): 1239-1248. DOI:10.19562/j.chinasae.qcgc.2024.07.011.
Wang Hai, Zhang Guirong, Luo Tong, et al. Multimodal data mining algorithm for abnormal cases in autonomous driving road scenarios[J]. Automotive Engineering, 2024, 46(07): 1239–1248. DOI:10.19562/j.chinasae.qcgc.2024.07.011.
[3] 田盼, 李晨, 张媛玥. 强化AI基础建设,提升数据标注能力[J]. 通信企业管理, 2024, (03): 66–68.
Tian Pan, Li Chen, Zhang Yuanyue. Strengthen AI infrastructure and improve data annotation capabilities[J]. Communications Enterprise Management, 2024, (03): 66–68.
[4] Dosovitskiy A, Ros G, Codevilla F, et al. CARLA: An open urban driving simulator[J]. arXiv preprint arXiv:1711.03938, 2017. DOI:10.48550/arXiv.1711.03938.
[5] Jeon H, Kim Y O, Choi M, et al. CARLA simulator-based evaluation framework development of lane detection accuracy performance under sensor blockage caused by heavy rain for autonomous vehicle[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 9977–9984.
[6] Hawlader F, Frank R. Towards a framework to evaluate cooperative perception for connected vehicles[C]//Proceedings of the 2021 IEEE Vehicular Networking Conference (VNC). Piscataway: IEEE, 2021: 36–39.
[7] Carletti C M R, Casetti C, Härri J, et al. ms-van3t-CARLA: An open-source co-simulation framework for cooperative perception evaluation[C]//Proceedings of the 2024 19th Wireless On-Demand Network Systems and Services Conference (WONS). Piscataway: IEEE, 2024: 93–96.
[8] de la Peña J, Bergasa L M, Antunes M, et al. AD PerDevKit: An autonomous driving perception development kit using CARLA simulator and ROS[C]//Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). Piscataway: IEEE, 2022: 4095–4100.
[9] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. DOI:10.1109/TPAMI.2016.2572683.
[10] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016. DOI:10.1109/CVPR.2016.91.
[11] Kendall A, Gal Y, Cipolla R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018. DOI:10.17863/CAM.25486.
[12] Yang M, Jiang K, Wen J, Peng L, Yang Y, Wang H, Yang M, Jiao X, Yang D. Real-time evaluation of perception uncertainty and validity verification of autonomous driving[J]. Sensors, 2023, 23(5).
[13] 郭孜政, 陈崇双, 闫伟, 等. 驾驶威胁感知评估方法[J]. 吉林大学学报 (工学版), 2012, 42(01): 46–50.
Guo Zizheng, Chen Chongshuang, Yan Wei, et al. Driving threat perception assessment methodology[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(01): 46–50.
[14] Kemeny A, Panerai F. Evaluating perception in driving simulation experiments[J]. Trends in Cognitive Sciences, 2003, 7(1): 31–37.
[15] Schreier T, Renz K, Geiger A, et al. On offline evaluation of 3D object detection for autonomous driving[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE, 2024. DOI:10.1109/ICCVW60793.2023.00441.
[16] Hell F, Hinz G, Liu F, et al. Monitoring perception reliability in autonomous driving: Distributional shift detection for estimating the impact of input data on prediction accuracy[C]//Proceedings of the 5th ACM Computer Science in Cars Symposium. New York: ACM, 2021: 1–9.
[17] 张新钰, 国纪龙, 李骏, 等. 基于信息论的智能驾驶可解释多模态感知[J/OL]. 中国科学: 信息科学, 1–22 [2024-08-12]. http://kns.cnki.net/kcms/detail/11.5846.TP.20240613.1548.002.html.
Zhang Xinyu, Guo Jilong, Li Jun, et al. Interpretable multimodal perception in intelligent driving based on information theory[J/OL]. Science in China: Information Sciences, 1–22 [2024-08-12].
[18] Liang M F, Su J C, Schulter S, et al. AIDE: An automatic data engine for object detection in autonomous driving[J/OL]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024. arXiv:2403.17373. DOI:10.48550/arXiv.2403.17373.
[19] Hell F, Hinz G, Liu F, et al. Monitoring perception reliability in autonomous driving: Distributional shift detection for estimating the impact of input data on prediction accuracy[C]//Proceedings of the Computer Science in Cars Symposium (CSCS’21). New York: ACM, 2021: 1–9. DOI:10.1145/3488904.3493382.
[20] 陈晓锋, 李郁峰, 王传松, 等. 基于多传感器融合的无人车目标检测系统研究[J/OL]. 激光杂志, 1–8 [2024-11-19]. http://kns.cnki.net/kcms/detail/50.1085.TN.20241106.1102.006.html.
Chen Xiaofeng, Li Yufeng, Wang Chuansong, et al. Research on target detection system for autonomous vehicles based on multi-sensor fusion[J/OL]. Laser Journal, 1–8 [2024-11-19].
[21] 赵艳丽, 林辉, 赵锋, 等. 多目标跟踪中的数据关联和航迹管理[J]. 现代雷达, 2007, (03): 28–31. DOI:10.16592/j.cnki.1004-7859.2007.03.009.
Zhao Yanli, Lin Hui, Zhao Feng, et al. Data association and track management in multi-target tracking[J]. Modern Radar, 2007, (03): 28–31.
[22] Fujino A, Isozaki H, Suzuki J. Multi-label text categorization with model combination based on F1-score maximization[J]//Proceedings of the International Joint Conference on Natural Language Processing (IJCNLP), 2008.
[23] Zhao X, Sun P, Xu Z, et al. Fusion of 3D LiDAR and camera data for object detection in autonomousvehicle applications[J]. IEEE Sensors Journal, 2020, PP(99): 1–1. DOI:10.1109/JSEN.2020.2966034.
[24] Barron J T. A general and adaptive robust loss function[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 4331–4339.
[25] Mack L, Grüninger F, Richardson B A, et al. Visuo-tactile object pose estimation for a multi-finger robot hand with low-resolution in-hand tactile sensing[J]. 2025.
[26] Kuhn H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1‑2): 83‑97.
[27] Bar‑Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation[M]. New York: John Wiley & Sons, 2001.
[28] Walker H M, Lev J. Statistical inference[J]. Journal of the American Statistical Association, 1953, 49(266). DOI:10.1037/11773-000.
[29] Fisher R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936, 7.
[30] Yin T, Zhou X, Krhenbühl P. Center-based 3D object detection and tracking[J/OL]. 2020. DOI:10.48550/arXiv.2006.11275.
[31] 阮海庭, 杨朝阳, 殷春风, 等. 基于毫米波雷达的自动紧急刹车系统设计[J]. 汽车科技, 2019, (03): 37–40, 45.
Ruan Haiting, Yang Zhaoyang, Yin Chunfeng, et al. Design of automatic emergency braking system based on millimeter-wave radar[J]. Automobile Technology, 2019, (03): 37–40, 45.
[32] 李坊朴, 芮雪, 李孜军, 等. 基于改进YOLOv5的小目标火灾检测模型研究[J/OL]. 清华大学学报(自然科学版), 1–9 [2025-01-02]. https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.004.
Li Fangpu, Rui Xue, Li Zijun, et al. Research on small object fire detection model based on improved YOLOv5[J/OL]. Journal of Tsinghua University (Science and Technology), 1–9 [2025-01-02].
[33] 罗亮, 谈莉斌, 余晓流, 等. 一种融合二维激光雷达和RGB-D相机的移动机器人建图方法研究[J]. 制造业自动化, 2023, 45(04): 137–140, 190.
Luo Liang, Tan Libin, Yu Xiaoliu, et al. A mapping method for mobile robots using 2D LiDAR and RGB-D camera fusion[J]. Manufacturing Automation, 2023, 45(04): 137–140, 190.
[34] 梁喻, 陈明明, 刘凡. 利用改进匈牙利算法求解旅行商问题[J]. 科学技术与工程, 2024, 24(14): 5920–5927.
Liang Yu, Chen Mingming, Liu Fan. Solving the traveling salesman problem using improved Hungarian algorithm[J]. Science Technology and Engineering, 2024, 24(14): 5920–5927.
[35] 刘珂琪, 董绵绵, 郜辉, 等. 基于光照感知权重融合的多模态行人检测算法[J]. 激光与光电子学进展, 2023, 60(16): 145–155.
Liu Keqi, Dong Mianmian, Gao Hui, et al. Multi-modal pedestrian detection algorithm based on illumination-aware weight fusion[J]. Laser & Optoelectronics Progress, 2023, 60(16): 145–155.
[36] Shi S, Cui J, Yu H, et al. VIPS: Vehicle-Infrastructure Perception Fusion for Autonomous Driving[C]//Proceedings of the 28th Annual International Conference on Mobile Computing and Networking (MobiCom). ACM, 2022: 1-14.
[37] Zhong Z, Hu Z, Sun H, et al. Detecting Multi-Sensor Fusion Errors in Advanced Driver-Assistance Systems[C]//Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM, 2022: 1-13.
[38] He C, Wang H, Zhang S, et al. CPD-KD: Cooperative Perception Network for Discrepancy Feature Fusion through Knowledge Distillation[J]. Scientific Reports, 2025, 15(1): 1123-1136.
|