| [1] LU L, LI GY, SWINDLEHURST AL, et al. An Overview of Massive MIMO: Benefits and Challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742–758.
[2] ZHANG J, BJÖRNSON E, MATTHAIOU M, et al. Prospective Multiple Antenna Technologies for Beyond 5G[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1637–1660.
[3] 赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J].中国科学:信息科学, 2019, 49(8): 963-987.
ZHAO Y J, YU G H, XU H Q. 6G mobile communication networks: vision, challenges, and key technologies [J]. Science China: Information Sciences, 2019, 49(8): 963-987.
[4] 张平, 牛凯, 田辉, 等. 6G移动通信技术展望[J]. 通信学报, 2019, 40(1): 141-148.
ZHANG P, NIU K, TIAN H, et al. Prospects of 6G mobile communication technology [J]. Journal on Communications, 2019, 40(1): 141-148.
[5] WANG Z, et al. Extremely Large-Scale MIMO: Fundamentals, Challenges, Solutions, and Future Directions[J]. IEEE Wireless Communications, 2024, 31(3): 117–124.
[6] CARVALHO ED, ALI A, AMIRI A, et al. Non-Stationarities in Extra-Large-Scale Massive MIMO[J]. IEEE Wireless Communications, 2020, 27(4): 74–80.
[7] LIN C, LI GY. Energy-Efficient Design of Indoor mmWave and Sub-THz Systems With Antenna Arrays[J]. IEEE Transactions on Wireless Communications, 2016, 15(7): 4660–4672.
[8] YU W, SHEN Y, HE H, et al. Hybrid Far- and Near-Field Channel Estimation for THz Ultra-Massive MIMO via Fixed Point Networks[C]// Proceedings of the GLOBECOM 2022-2022 IEEE Global Communications Conference. Rio de Janeiro, Brazil: IEEE, 2022: 5384–5389.
[9] CUI M, WU Z, LU Y, et al. Near-Field MIMO Communications for 6G: Fundamentals, Challenges, Potentials, and Future Directions[J]. IEEE Communications Magazine, 2023, 61(1): 40–46.
[10] HAN C, CHEN Y, YAN L, et al. Cross Far- and Near-Field Wireless Communications in Terahertz Ultra-Large Antenna Array Systems[J]. IEEE Wireless Communications, 2024, 31(3): 148–154.
[11] WANG Z, LI X, CHEN Y, et al. A tutorial on extremely large-scale MIMO for 6G: Fundamentals, signal processing, and applications[J]. IEEE Communications Surveys & Tutorials, 2024, 26(3): 1560-1605.
[12] CUI M, DAI L. Channel Estimation for Extremely Large-Scale MIMO: Far-Field or Near-Field?[J]. IEEE Transactions on Communications, 2022, 70(4): 2663–2677.
[13] WEI X, DAI L. Channel Estimation for Extremely Large-Scale Massive MIMO: Far-Field, Near-Field, or Hybrid-Field?[J]. IEEE Communications Letters, 2022, 26(1): 177–181.
[14] HU Z, CHEN C, JIN Y, et al. Hybrid-Field Channel Estimation for Extremely Large-Scale Massive MIMO System[J]. IEEE Communications Letters, 2023, 27(1): 303–307.
[15] CAO J, DU J, HAN M, et al. Efficient Sparse Bayesian Channel Estimation for Near-Field Ultra-Scale Massive MIMO Systems[J]. IEEE Wireless Communications Letters, 2023, 12(12): 2133–2137.
[16] LEI H, ZHANG J, XIAO H, et al. Channel Estimation for XL-MIMO Systems With Polar-Domain Multi-Scale Residual Dense Network[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 1479–1484.
[17] 黄源, 何怡刚, 吴裕庭, 等. 基于深度学习的压缩感知FDD大规模MIMO系统稀疏信道估计算法[J]. 通信学报, 2021, 42(8): 61-69.
HUANG Y, HE Y G, WU Y T, et al. Deep learning for compressed sensing based sparse channel estimation in FDD massive MIMO systems[J]. Journal on Communications, 2021, 42(8): 61-69.
[18] HUANG X, CHEN L, CHEN X et al. Wireless channel estimation and equalization based on deep learning[C]//Proceedings of the 10th IEEE International Conference on Intelligent Data and Security. 2024:47-52.
[19] JIN Y, et al. Multiple Residual Dense Networks for Reconfigurable Intelligent Surfaces Cascaded Channel Estimation[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2134–2139.
[20] GAO S, DONG P, PAN Z, et al. Lightweight Deep Learning Based Channel Estimation for Extremely Large-Scale Massive MIMO Systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 10750–10754.
[21] LI S, DONG P. Mixed attention transformer enhanced channel estimation for extremely large-scale MIMO systems[C]//Proceedings of the 16th International Conference on Wireless Communications and Signal Processing. 2024:394-399.
[22] GUO J, LIU G, WU Q et al. Parallel attention-based transformer for channel estimation in RIS-aided 6G wireless communications[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11):15927-15940.
[23] MOHSIN MA, JAMEEL SM, RIZWAN H et al. Transformer-based distributed machine learning for downlink channel estimation in RIS-aided networks[C]//Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops. 2025:1-5.
[24] SINGH S, TRIVEDI A, SAXENA D. Channel estimation for intelligent reflecting surface aided communication via graph transformer[J]. IEEE Transactions on Green Communications and Networking, 2024, 8(2):756-766.
[25] ARTEMASOV D, ANDREEV K, FROLOV A et al. Recurrent transformer neural network-based hybrid far- and near-field THz channel estimation[C]//Proceedings of the IEEE International Multi-Conference on Engineering, Computer and Information Sciences. 2024:74-79.
[26] RAO Y, ZHAO W, ZHU Z, et al. GFNet: Global Filter Networks for Visual Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 10960–10973.
[27] SELVAN KT, JANASWAMY R. Fraunhofer and Fresnel Distances: Unified Derivation for Aperture Antennas[J]. IEEE Antennas and Propagation Magazine, 2017, 59(4): 12–15.
[28] HE H, WEN CK, JIN S, et al. Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems[J]. IEEE Wireless Communications Letters, 2018, 7(5): 852–855.
[29] SOLTANI M, POURAHMADI V, MIRZAEI A, et al. Deep Learning-Based Channel Estimation[J]. IEEE Communications Letters, 2019, 23(4): 652–655.
[30] WU W, LIAO S, LV G, et al. Image Blind Denoising Using Dual Convolutional Neural Network With Skip Connection[J]. arXiv Preprint, arXiv:2304.01620, 2023.
[31] LI T, YANG Y, LEE J, et al. DCSaNet: Dilated convolution and self-attention-based neural network for channel estimation in IRS-aided multi-user communication system[J]. IEEE Wireless Communications Letters, 2023, 12(7): 1139-1143.
[32] JIN X, ZHAO X, HE J. Lightweight channel estimation method for dynamic OFDM system based on deep learning[C]// Proceedings of the 3rd International Conference on Electronics and Information Technology. Chengdu, China, 2024: 21-25.
[33] GAO S, DONG P, PAN Z, et al. Deep Multi-Stage CSI Acquisition for Reconfigurable Intelligent Surface Aided MIMO Systems[J]. IEEE Communications Letters, 2021, 25(6): 2024–2028. |