[1] Deng S G, Zhao H L, Fang W J, et al. Edge Intelligence:
The Confluence of Edge Computing and Artificial Intelli
gence[J]. IEEE Internet of Things Journal, 2020, 7(8):
7457-7469.
[2] Nam D H. A Comparative Study of Mobile Cloud Compu
ting, Mobile Edge Computing, and Mobile Edge Cloud
Computer Engineering, & Applied Computing (CSCE),
Las Vegas, USA,2023: 1219-1224.
[3] 褚淑惠. 移动边缘计算中基于资源动态分配的计算卸
载问题研究[D]. 长春: 吉林大学计算机科学与技术学
院,2020.
70
80
Chu Shu-hui. Research on computation offloading based
on dynamic resource allocation in mobile edge compu
ting[D]. Changchun: College of Computer Science and
Technology of Jilin University, 2020.
[4] Zeng L, Liu Q, Shen S G, et al. Improved double deep Q
network-based task scheduling algorithm in edge compu
ting for makespan optimization[J]. Tsinghua Science and
Technology, 2023, 29(3): 806-817.
[5] Jiang H B, Dai X X, Xiao Z, et al. Joint task offloading
and resource allocation for energy-constrained mobile
edge computing[J]. IEEE Transactions on Mobile Compu
ting, 2022, 22(7): 4000-4015.
[6] Wang D Z, Wang W, Gao H, et al. Delay-optimal compu
tation offloading in large-scale multi-access edge compu
ting using mean field game[J]. IEEE Transactions on
Wireless Communications, 2023, 23(3): 1684-1698.
[7] Huang J W, Lv B F, Wu Y, et al. Dynamic admission con
trol and resource allocation for mobile edge computing
enabled small cell network[J]. IEEE Transactions on Ve
hicular Technology, 2021, 71(2): 1964-1973.
[8] Zhang H X, Yang Y J, Shang B D, et al. Joint resource
allocation and multi-part collaborative task offloading in
MEC systems[J]. IEEE Transactions on Vehicular Tech
nology, 2022, 71(8): 8877-8890.
[9] Xue J B, An Y N. Joint task offloading and resource allo
cation for multi-task multi-server NOMA-MEC net
works[J]. IEEE Access, 2021, 9: 16152-16163.
[10] Li X L, Zhang L C, Zhou M, et al. Task recommendation
based on user preferences and user-task matching in mobile crowdsensing[J]. Applied Intelligence, 2024, 54(1):
131-146.
[11] Wu H J, Zhang J, Cai Z P, et al. Resolving multitask
competition for constrained resources in dispersed com
puting: A bilateral matching game[J]. IEEE Internet of
Things Journal, 2021, 8(23): 16972-16983.
[12] Chen Y Y, Lin Y H, Zheng Z W, et al. Preference-aware
edge server placement in the internet of things[J]. IEEE
Internet of Things Journal, 2021, 9(2): 1289-99.
[13] Chen D W, Hong C S, Wang L, et al. Match
ing-theory-based low-latency scheme for multitask feder
ated learning in MEC networks[J]. IEEE Internet of
Things Journal, 2021, 8(14): 11415-11426.
[14] Yan Y, Huo Y, Gao Q H, et al. An Energy-Based Load
Balancing Scheme for Secure Computation Offloading in
Cell-Free Massive MIMO Systems[J/OL]. IEEE Transac
tions on Communications, 1-1[2025-5-11].
[15] Chen L, Wu J G, Zhang J, et al. Dependency-aware com
putation offloading for mobile edge computing with
edge-cloud cooperation[J]. IEEE Transactions on Cloud
Computing, 2020, 10(4): 2451-2468.
[16] Chen Q L, Kuang Z F, Zhao L. Multiuser computation
offloading and resource allocation for cloud–edge hetero
geneous network[J]. IEEE Internet of Things Journal,
2021, 9(5): 3799-3811.
[17] Ding Y, Li K L, Liu C B, et al. A potential game theoretic
approach to computation offloading strategy optimization
in end-edge-cloud computing[J]. IEEE Transactions on
Parallel and Distributed Systems, 2021, 33(6): 1503-1519.
[18] Yuan P Y, Cai Y Y, Huang X Y, et al. Collaboration im
proves the capacity of mobile edge computing[J]. IEEE
Internet of Things Journal, 2019, 6(6): 10610-10619.
[19] Zhang L Y, Ma P M, Zhang L, et al. Joint Task Proportion
and Edge Node Selection for Latency Minimization Based
on MEC Collaboration[C]//2022 IEEE 8th International
Conference on Computer and Communications (ICCC),
Chengdu, China,2023: 781-787.
[20] 赵庶旭,夏心雨,王小龙.基于不确定联盟博弈的EIP收益
预估策略研究[J]. 通信学报,2024,45(12):111-123.
Zhao Shu-xu, Xia Xin-yu, Wang Xiao-long. Uncertain
edge coalition game based EIP revenue estimation strate
gy[J]. Journal on Communications, 2024, 45(12): 111-123.
[21] Li W M, Li Q, Chen L, et al. A storage resource collabo
ration model among edge nodes in edge federation ser
vice[J].IEEE Transactions on Vehicular Technology, 2022,
71(9): 9212-9224.
[22] BAI J J, LIU X, ZHU X R, et al. Joint optimization of task
offloading and resource allocation based on edge-terminal
collaboration[C]//2023 IEEE/CIC International Confer
ence on Communications in China (ICCC Workshops),
Dalian, China,2023: 1-6.
[23] Chai Y, Zeng X J. Shapley value-based computation of
floading for edge computing[J]. IEEE Transactions on
Vehicular Technology, 2023, 72(7): 9448-9458.
[24] Wang X L, Dang J W, Zhao S X, et al. Edge coalition
construction based on a novel market equilibrium price[J].
China Communications, 2025, 22(3): 288-305.
[25] 赵庶旭,韦萍,王小龙.多任务并发边缘计算环境中最优
联盟结构生成策略[J].通信学报,2023,44(2):172-184.
Zhao Shu-xu, Wei Ping, Wang Xiao-long. Optimal coali
tion structure generation strategy in multi-task concurrent
edge computing environment[J]. Journal on Communica
tions, 2023, 44(2): 172-184.
[26] Wang X L, Dang J W, Zhao S X, et al. Coalition Structure
Generation in Edge Computing Environment With Multi
tasking Concurrency[J]. IEEE Internet of Things Journal,
2023, 10(5): 4324-4338.
[27] Zhang J, Hu X P, Ning Z L, et al. Energy-latency tradeofffor energy-aware offloading in mobile edge computing
networks[J]. IEEE Internet of Things Journal, 2017, 5(4):
2633-2645.
[28] DONG Y, XU G, DING Y, et al. A ‘joint-me’ task deploy
ment strategy for load balancing in edge computing[J].
IEEE Access, 2019, 7: 99658-99669.
[29] 赵庶旭,蒋恺俊,王小龙.边缘环境下面向移动性用户的
微服务选择方法[J].通信学报,2025,46(05):200-217.
Zhao Shu-xu, Jiang Kai-jun, Wang Xiao-long. Micro
service selection approach for mobile users in edge com
puting environments[J]. Journal on Communications,
2025, 46(05):200-217.
[30] Alruwaili M, Kim J, Oluoch J. Optimizing 5G power al
location with device-to-device communication: A
Gale-Shapley algorithm approach[J]. IEEE Access, 2024,
12: 30781-30795.
[31] Qin L, Zhu Y, Liu S, et al. The Shapley Value in Data
Science: Advances in Computation, Extensions, and Ap
plications[J]. Mathematics, 2025, 13(10): 1581.
[32] Puškáč L, Benovič M, Breier J, et al. Make Shuffling
Great Again: A Side-Channel-Resistant Fisher–Yates Al
gorithm for Protecting Neural Networks[J]. IEEE Trans
actions on Very Large Scale Integration (VLSI) Systems,
2025.
[33] Ahmed S K. How to choose a sampling technique and
determine sample size for research: A simplified guide for
researchers[J]. Oral Oncology Reports, 2024, 12: 100662.
|