[1] Alexan W, Aly L, Korayem Y, et al. Secure communication of military reconnaissance images over UAV-assisted relay networks[J]. IEEE Access, 2024, 12: 78589-78610.
[2] Rinaldi M, Primatesta S. Comprehensive Task Optimization Architecture for Urban UAV-Based Intelligent Transportation System[J]. Drones, 2024, 8(9): 473.
[3] He Y, Liu Z, Guo Y, et al. UAV based sensing and imaging technologies for power system detection, monitoring and inspection: a review[J/OL]. Nondestructive Testing and Evaluation:1-68[2025-06-03].https://doi.org/10.1080/10589759.2024.2421938.
[4] Panday U S, Pratihast A K, Aryal J, et al. A review on drone-based data solutions for cereal crops[J]. Drones, 2020, 4(3): 41.
[5] Wu J, Cui Z, Sheng V S, et al. A comparative study of SIFT and its variants[J]. Measurement Science Review, 2013, 13(3): 122–131.
[6] Pang Y, Yuan Y, Li X, et al. Efficient HOG human detection[J]. Signal Processing, 2011, 91(4): 773–781.
[7] Oyallon E, Rabin J. An analysis of the SURF method[J]. Image Processing On Line, 2015, 5: 176–218.
[8] He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vision. Venice, Italy: IEEE Press, 2017: 2961-2969.
[9] Girshick R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. Santiago, Chile: IEEE Press, 2015: 1440-1448.
[10] Sun X, Wu P, Hoi S C H. Face detection using deep learning: An improved faster RCNN approach[J]. Neurocomputing, 2018, 299: 42–50.
[11] 蒋伟,王万虎,杨俊杰.AEM-YOLOv8s:无人机航拍图像的小目标检测[J].计算机工程与应用. 2024, 60(17): 191-202.
JIANG W, WANG W H, YANG J J. AEM-YOLOv8s: Small Target Detection Algorithm for UAV Aerial Im-ages[J]. Computer Engineering and Applications, 2024,60(17): 191-202.
[12] 梁燕,何孝武,邵凯,等.改进YOLOv8的无人机航拍图像目标检测算法[J].计算机工程与应用,2025,61(01): 121-130.
Liang Yan, He Xiaowu, Shao Kai, et al. An Improved YOLOv8-Based Object Detection Algorithm for UAV Aerial Images. Computer Engineering and Applications, 2025, 61(01): 121–130.
[13] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//European conference on computer vision. Cham: Springer International Publishing, 2016: 21-37.
[14] Wang Y, Wang C, Zhang H, et al. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery[J]. Remote Sensing, 2019, 11(5): 531.
[15] Zhao M, Li W, Li L, et al. Single-frame infrared small-target detection: A survey[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(2): 87–119.
[16] Verma T, Singh J, Bhartari Y, et al. SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients[EB/OL]. (2024)[2025-06-03]. https://arxiv.org/abs/2405.01699.
[17] Li H, Zhang R, Pan Y, et al. Lr-fpn: Enhancing remote sensing object detection with location refined feature pyramid network[C]//2024 International Joint Conference on Neural Networks (IJCNN). Yokohama, Japan: IEEE, 2024: 1-8.
[18] Chen Y, Zhang C, Chen B, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Computers in biology and medicine, 2024, 170: 107917.
[19] Lin L, Fan H, Zhang Z, et al. Swintrack: A simple and strong baseline for transformer tracking[C]//Advances in Neural Information Processing Systems. New Orleans, USA: NeurIPS, 2022: 16743-16754.
[20] 张晞, 赖惠成, 姜迪, 等. MBFE-DETR:多尺度边界特征增强下的无人机目标检测算法[J]. 计算机工程与应用, 2025, 61(17): 1-15
Zhang Xi, Lai Huicheng, Jiang Di, et al. MBFE-DETR: UAV object detection algorithm with multi-scale boundary feature enhancement [J]. Computer Engineering and Applications, 2025, 61(17): 1–15.
[21] 尹泽宇, 杨波, 陈金令, 等. 基于STD-DETR的轻量化小目标检测算法[J].激光与光电子学进展,2025,62(08):146-156.
Yin Zeyu, Yang Bo, Chen Jinling, et al. Lightweight small object detection algorithm based on STD-DETR [J]. Laser & Optoelectronics Progress, 2025, 62(08): 146–156.
[22] Zhang Z. Drone-YOLO: An efficient neural network method for target detection in drone images[J]. Drones, 2023, 7(8): 526.
[23] Wang G, Chen Y, An P, et al. UAV-YOLOv8: A small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190.
[24] 孙佳宇, 徐民俊, 张俊鹏, 等. 优化改进YOLOv8无人机视角下目标检测算法[J]. 计算机工程与应用, 2025, 61(1): 1-13.
Sun Jiayu, Xu Minjun, Zhang Junpeng, et al. Optimization and Improvement of YOLOv8-Based Object Detection Algorithm under UAV Perspective[J]. Computer Engineering and Applications, 2025, 61(1): 1–13.
[25] 颜豪男, 吕伏, 冯永安. 特征级自适应增强的无人机目标检测算法[J].计算机科学与探索,2024,18(06):1566-1578.
Yan Haonan, Lü Fu, Feng Yong'an. UAV Object Detection Algorithm with Feature-Level Adaptive Enhancement. Computer Science and Exploration, 2024, 18(06): 1566–1578.
[26] 赵继达, 甄国涌, 储成群. 基于 YOLOv8 的无人机图像目标检测算法[J]. 计算机工程, 2024, 50(4):
113-120.
Zhao Jida, Zhen Guoyong, Chu Chengqun. UAV image object detection algorithm based on YOLOv8. Computer Engineering, 2024, 50(4): 113–120.
[27] 董一兵, 曾辉, 侯少杰. LMUAV-YOLOv8:低空无人机视觉目标检测轻量化网络[J].计算机工程与应用,2025,61(03):94-110.
Dong Yibing, Zeng Hui,Hou Shaojie. LMUAV-YOLOv8: Lightweight Network for Visual Object Detection in Low-Altitude UAVs. Computer Engineering and Applications, 2025, 61(03): 94–110.
[28] Xu S, Zheng S, Xu W, et al. Hcf-net: Hierarchical context fusion network for infrared small object detection[C]//2024 IEEE International Conference on Multimedia and Expo (ICME). Niagara Falls, Canada: IEEE, 2024: 1-6.
[29] Li H, Li J, Wei H, et al. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles [EB/OL]. (2022) [2025-06-03].https://arxiv.org/abs/2206.02424.
[30] Chen J, Mai H S, Luo L, et al. Effective feature fusion network in BIFPN for small object detection[C]//2021 IEEE international conference on image processing (ICIP). Anchorage, USA: IEEE, 2021: 699-703.
[31] Zhu X, Hu H, Lin S, et al. Deformable convnets v2: More deformable, better results[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Long Beach, USA: IEEE Press, 2019: 9308-9316.
[32] Li H, Zhang Y, Zhang Y, et al. Dcnv3: Towards next generation deep cross network for ctr prediction[EB/OL]. (2024)[2025-11-05]. https://arxiv.org/abs/2407.13349.
[33] Dai X, Chen Y, Xiao B, et al. Dynamic head: Unifying object detection heads with attentions[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Nashville, USA: IEEE Press, 2021: 7373-7382.
[34] Ouyang D, He S, Zhang G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Rhodes Island, Greece: IEEE, 2023: 1-5.
[35] Zheng Z, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press, 2020: 12993–13000.
[36] Du S, Zhang B, Zhang P, et al. An improved bounding box regression loss function based on CIOU loss for multi-scale object detection[C]//2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML). Chengdu, China: IEEE, 2021: 92–98.
[37] Zhang H, Zhang S. Shape-IoU: More accurate metric considering bounding box shape and scale[EB/OL]. (2023)[2025-06-03].https://arxiv.org/abs/2312.17663.
[38] Zhang H, Xu C, Zhang S. Inner-iou: more effective intersection over union loss with auxiliary bounding box[EB/OL].(2023)[2025-06-03].https://arxiv.org/abs/2311.02877.
[39] Du D, Zhu P, Wen L, et al. VisDrone-DET2019: The vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Seoul, Korea: IEEE Press, 2019: 0–0.
[40] Cheng Y, Zhu J, Jiang M, et al. Flow: A dataset and benchmark for floating waste detection in inland waters[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE Press, 2021: 10953–10962.
[41] 罗显志, 汪航. 跨尺度特征融合的无人机小目标检测算法[J]. 计算机工程与应用, 2025, 61(14): 135-147. Luo Xianzhi, Wang Hang. UAV small object detection algorithm based on cross-scale feature fusion [J]. Computer Engineering and Applications, 2025, 61(14): 135-147.
|