| [1]International Data Corporation. Worldwide IDC Global DataSphere Forecast, 2024-2028: AI Everywhere, But Upsurge in Data Will Take Time (Doc#US52076424), 2024-05.
[2]Sun H, Lou B, Zhao C, et al. Asynchronous Compaction Acceleration Scheme for Near-data Processing-enabled LSM-tree-based KV Stores[J]. ACM Transactions on Embedded Computing Systems, 2024, 23(6): 1-33.
[3]Google. LeveIDB. Available: https://github.com/google/leveldb/ (2021).
[4]Facebook. RocksDB. Available: https://github.com/facebook/rocksdb (2024).
[5]Huang G, Cheng X, Wang J, et al. X-Engine: An Optimized Storage Engine for Large-scale E-commerce Transaction Processing[C] //Proceedings of the 2019 International Conference on Management of Data. New York, NY: ACM, 2019: 651-665.
[6]Amur H, Andersen D G, Kaminsky M, et al. Design of a Write-Optimized Data Store[J]// https://repository.gatech.edu/server/api/core/bitstreams/79429d60-38b7-4885-9a88-c8211c7acba8/content
[7]Yao T, Wan J, Huang P, et al. Building Efficient Key-Value Stores via a Lightweight Compaction Tree[J]. ACM Transactions on Storage, 2017, 13(4): 1-28.
[8]Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, et al. PebblesDB: Building key-value Stores using Fragmented Log-Structured Merge Trees[C]// Proceedings of the 26th Symposium on Operating Systems Principles (SOSP'17), New York, NY: ACM, 2017: 497-514.
[9]Oana Balmau, Diego Didona, Rachid Guerraoui, et al. TRIAD: Creating Synergies Between Memory, Disk and Log in Log Structured Key-Value Stores[C]//Proceedings of the 2017 USENIX Annual Technical Conference (ATC'17), Berkeley, CA: USENIX Association, 2017: 363-375.
[10]Fei Mei, Qiang Cao, Hong Jiang, Jingjun Li. SifrDB: A Unified Solution for Write-Optimized Key-Value Stores in Large Datacenter[C]//Proceedings of the ACM Symposium on Cloud Computing (SoCC'18). New York, NY: ACM, 2018: 477-489.
[11]Yunpeng Chai, Yanfeng Chai, Xin Wang, et al. LDC: A Lower-level Driven Compaction Method to Optimize SSD-Oriented Key-Value Stores[C]//Proceedings of 2019 IEEE the 35th International Conference on Data Engineering (ICDE'19). Piscataway, NJ: IEEE, 2019: 722-733.
[12]Oana Balmau, Florin Dinu, Willy Zwaenepoel, et al. SILK. Preventing Latency Spikes in Log-Structured Merge Key-Value Stores[C]//Proceedings of 2019 USENIX Annual Technical Conference (ATC'19). Berkeley, CA: USENIX Association, 2019: 753-766.
[13]Qiang Zhang, Yongkun Li, Patrick PC Lee, et al. UniKV: Toward High-Performance and Scalable KV Storage in Mixed Workloads Via Unified indexing[C]//Proceedings of the 2020 IEEE 36th International Conference on Data Engineering (ICDE'20). Piscataway, NJ: IEEE, 2020: 313-324.
[14]Yifan Dai, Yien Xu, Aishwarya Ganesan, et al. From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees[C]//Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI'20). Berkeley, CA: USENIX Association, 2020:155-171.
[15]Fei Li, Youyou Lu, Zhe Yang, et al. SineKV: Decoupled Secondary Indexing for LSM-based Key-Value Stores[C]//Proceedings of the IEEE 40th International Conference on Distributed Computing Systems (ICDCS'20). Piscataway, NJ: IEEE, 2020: 1112-1122.
[16]Jianshun Zhang, Fang Wang, Sheng Qiu, et al. Scavenger: Better Space-Time Trade-Offs for Key-Value Separated LSM-trees[C]//Proceedings of the 40th IEEE International Conference on Data Engineering (ICDE'24). Piscataway, NJ: IEEE, 2024:4072-4085.
[17]Chen Shen, Youyou Lu, Fei Li, et al. NovKV: Efficient Garbage Collection for Key-Value Separated LSM-Stores[C]//Proceedings of the 36th Symposium on Mass Storage Systems and Technologies (MSST'20). Piscataway, NJ: IEEE, 2020: 1-8.
[18]Shetty P, Spillane R, Malpani R, et al. Building Workload-Independent Storage with VT-Trees[C]//Proceedings of the 11th USENIX Conference on File and Storage Technologies (FAST ’13). Berkeley, CA: USENIX Association, 2013:17-30.
[19]Sears R, Ramakrishnan R. bLSM: A General Purpose Log Structured Merge Tree[C]//Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. New York, NY: ACM, 2012: 217-228.
[20]Feng-Feng Pan, Yin-Liang Yue, Jin Xiong. dCompaction: Speeding up Compaction of the LSM-tree via Delayed Compaction[J]. Journal of Computer Science and Technology, 2017, 32(1): 41-54.
[21]Yue Y, He B, Li Y, et al. Building an Efficient Put-Intensive Key-Value Store with Skip-Tree[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(4): 961-973.
[22]Lu L, Pillai T S, Gopalakrishnan H, et al. WiscKey: Separating Keys from Values in SSD-Conscious Storage[J]. ACM Transactions on Storage, 2017, 13(1): 1-28.
[23]Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, et al. HashKV: Enabling Efficient Updates in KV Storage via Hashing[C]// Proceedings of the USENIX Annual Technical Conference (ATC'18). Berkeley, CA: USENIX Association, 2018: 1007-1019.
[24]Chenlei Tang, Jiguang Wan, Changsheng Xie. FenceKV: Enabling Efficient Range Query for Key-Value Separation[J]. IEEE Transactions on Parallel and Distributed Systems. 2022, 33(12): 3375-3386.
[25]Giorgos Xanthakis, Giorgos Saloustros, Nikos Batsaras, et al. Parallax: Hybrid Key-Value Placement in Lsm-based Key-Value Stores[C]//Proceedings of the ACM Symposium on Cloud Computing (SoCC'21). New York, NY: ACM, 2021:305-318.
[26]Hao Chen, Chaoyi Ruan, Cheng Li, et al. SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage[C]//Proceedings of the 19th USENIX Conference on File and Storage Technologies(FAST'21). Berkeley, CA: USENIX Association, 2021:17-32.
[27]Anastasios Papagiannis, Giorgos Saloustros, Giorgos Xanthakis, et al. Kreon: An Efficient Memory-Mapped Key-Value Store for Flash Storage[J]. ACM Transactions on Storage, 2021, 17(1): 7:1-7:32.
[28]Zhuohui Duan, Jiabo Yao, Haikun Liu, Xiaofei Liao, et al. Revisiting Log-structured Merging for KV Stores in Hybrid Memory Systems[C]// Proceedings of the 28th Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’23). New York, NY: ACM, 2023:674-687.
[29]Dong Huang, Dan Feng, Qiankun Liu, et al. SplitZNS: Towards an Efficient LSM-tree on Zoned Namespace SSDs[J]. ACM Transactions on Architecture and Code Optimization, 2023, 20(3): 45:1-45:26.
[30] Jongsung Lee, Dong Uk Kim, Jae W. Lee. WALTZ: Leveraging Zone Append to Tighten the Tail Latency of LSM Tree on ZNS SSD[J]. Proceedings of the VLDB Endowment. 2023, 16(11): 2884-2896.
[31] Linbo Long, Shuiyong He, Jingcheng Shen, et al. WA-Zone: Wear-Aware Zone Management Optimization for LSM-tree on ZNS SSDs[J]. ACM Transactions on Architecture and Code Optimization, 2024, 21(1): 16:1-16:23.
[32]Renping Liu, Junhua Chen, Peng Chen, et al. Hi-ZNS: High Space Efficiency and Zero-Copy LSM-tree Based Stores on ZNS SSDs[C]//Proceedings of the 53rd International Conference on Parallel Processing (ICPP'24). New York, NY: ACM, 2024: 1217-1226.
[33]Jingcheng Shen, Lang Yang, Linbo Long, et al. Overlapping Aware Zone Allocation for LSM Tree-Based Store on ZNS SSDs[C]// Proceedings of the 29th Asia and South Pacific Design Automation Conference (ASPDAC'24). Piscataway, NJ: IEEE, 2024: 448-453.
[34]Lu A, Narendra Agrawal J, Fang Z. SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms[J]. ACM Transactions on Reconfigurable Technology and Systems, 2024, 17(3): 1-28.
[35]Soltaniyeh M, Lagrange Moutinho Dos Reis V, Bryson M, et al. Near-Storage Processing for Solid State Drive Based Recommendation Inference with SmartSSDs®[C]//Proceedings of the 2022 ACM/SPEC on International Conference on Performance Engineering. New York, NY: ACM, 2022: 177-186.
[36]Ke L, Gupta U, Cho B Y, et al. RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing[C]//2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). Piscataway, NJ: IEEE, 2020: 790-803.
[37]Li S, Wang Y, Hanson E, et al. NDRec: A Near-Data Processing System for Training Large-Scale Recommendation Models[J]. IEEE Transactions on Computers, 2024, 73(5): 1248-1261.
[38]Zheng Y, Fixelle J, Challapalle N, et al. ISKEVA: In-SSD Key-Value Database Engine for Video Analytics Applications[C] //Proceedings of the 23rd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems. New York, NY: ACM, 2022: 50-60.
[39]Dann J, Ritter D, Fröning H. Non-relational Databases on FPGAs: Survey, Design Decisions, Challenges[J]. ACM Computing Surveys, 2023, 55(11): 1-37.
[40] The storage networking industry association, 2023, SNIA. URL https://www.snia.org/. (Accessed 8 May 2023).
[41]Sun X, Xue C J, Yu J, et al. Accelerating Data Filtering for Database using FPGA[J]. Journal of Systems Architecture, 2021, 114: 101908.
[42]刘忠沛,吕高锋,王继昌等. 专用数据处理器综述[J]. 计算机工程与科学, 2023, 45(2): 215-227.
LIU Zhongpei, LÜ Gaofeng, WANG Jichang, et al. Review on Data Processing Unit[J]. 2023, 45(2): 215-227.
[43] 蓝龙英,宋程霖,左石凯等.存算一体技术研究进展与挑战[J/OL].半导体技术. https://link.cnki.net/urlid/13.1109.TN.20250710.1626.002
Lan Longying, Song Chenglin, Zuo Shikai, et al. Research Progress and Challenge of Compute-in-Memory Technology[J/OL]. Semiconductor Technology.https://link.cnki.net/urlid/13.1109.TN.20250710.1626.002
[44]Woods L, István Z, Alonso G. Ibex: An Intelligent Storage Engine with Support for Advanced SQL Offloading[J]. Proceedings of the VLDB Endowment, 2014, 7(11): 963-974.
[45]Joo Hwan Lee, Hui Zhang, Veronica Lagrange, et al. SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD[J]. IEEE Computer Architecture Letters.2020, 19(2): 114-117.
[46]Jaewook Kwak, Sangjin Lee, Kibin Park, et al. Cosmos+ OpenSSD: Rapid Prototype for Flash Storage Systems[J]. ACM Transactions on Storage, 2020, 16(3): 15:1-15:35.
[47]Teng Zhang, Jianying Wang, Xuntao Cheng, et al. FPGA-Accelerated Compactions for LSM-based Key-Value Store[C]//18th USENIX Conference on File and Storage Technologies (FAST'20). Berkeley, CA: USENIX Association, 2020: 225-237.
[48] Sun X, Yu J, Zhou Z, et al. FPGA-based Compaction Engine for Accelerating LSM-tree Key-Value Stores[C]//2020 IEEE 36th International Conference on Data Engineering (ICDE). Piscataway, NJ: IEEE, 2020: 1261-1272.
[49]Tang D, Wang W, Mao Y, et al. STEM: Streaming-Based FPGA Acceleration for Large-Scale Compactions in LSM KV[C]//2024 IEEE 40th International Conference on Data Engineering (ICDE). Piscataway, NJ: IEEE, 2024: 3893-3905.
[50]Peng Xu, Jiguang Wan, Ping Huang, et al. LUDA: Boost LSM Key Value Store Compactions with GPUs. arXiv: 2004.03054. https://arxiv.org/abs/2004.03054.
[51]Choi W G, Kim D, Roh H, et al. OurRocks: Offloading Disk Scan Directly to GPU in Write-Optimized Database System[J]. IEEE Transactions on Computers, 2021, 70(11): 1831-1844.
[52]Sun H, Xu J, Jiang X, et al. gLSM: Using GPGPU to Accelerate Compactions in LSM-tree-based Key-value Stores[J]. ACM Transactions on Storage, 2024, 20(1): 1-41.
[53]Chen J, Wang S, Zhang Z, et al. iKnowFirst: An Efficient DPU-Assisted Compaction for LSM-Tree-Based Key-Value Stores[C].//2023 IEEE 34th International Conference on Application-specific Systems, Architectures and Processors (ASAP). Piscataway, NJ: IEEE,2023: 53-60.
[54]李迦雳, 刘铎, 陈咸彰, 等. 基于闪存存储的近数据处理技术综述 [J]. 集成技术, 2022, 11(3): 23-41.
Li JL, Liu D, Chen XZ, et al. A Survey of Flash Memory based Near-data Processing Technology [J]. Journal of Integration Technology, 2022, 11(3): 23-41.
[55]谢洋,李晨,陈小文. 面向数据密集型应用的近数据处理架构设计[J]. 计算机工程与科学,2025,47(5:)797-810.
XIE Yang, LI Chen, CHEN Xiaowen. A near-data processing architecture for data-intensive applications[J]. 025,47(5:)797-810.
[56]Fakhry D, Abdelsalam M, El-Kharashi M W, et al. A review on computational storage devices and near memory computing for high performance applications[J]. Memories - Materials, Devices, Circuits and Systems, 2023, 4: 100051.
[57]Ding C, Zhou J, Wan J, et al. DComp: Efficient Offload of LSM-tree Compaction with Data Processing Units[C]. // Proceedings of the 52nd International Conference on Parallel Processing. New York, NY: ACM, 2023:233-243.
[58]Ding C, Zhou J, Lu K, et al. D2Comp: Efficient Offload of LSM-tree Compaction with Data Processing Units on Disaggregated Storage[J]. ACM Transactions on Architecture and Code Optimization, 2024, 21(3): 1-22.
[59]Zhou H, Chen Y, Zeng W, et al. GPComp: Using GPU and SSD-GPU Peer to Peer DMA to Accelerate LSM-Tree Compaction for Key-Value Store[J]. IEEE Transactions on Parallel and Distributed Systems, 2025, 36(9): 1920-1936.
[60]Sun H, Jiang X, Yue Y, et al. RGKV: A GPGPU-Empowered Compaction Framework for LSM-Tree-Based KV Stores With Optimized Data Transfer and Parallel Processing[J]. IEEE Transactions on Computers, 2025, 74(5): 1605-1619.
[61]Gu B, Yoon A S, Bae D H, et al. Biscuit: A Framework for Near-Data Processing of Big Data Workloads[C]//2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). Piscataway, NJ: IEEE, 2016: 153-165.
[62]Wu S M, Lin K H, Chang L P. KVSSD: Close Integration of LSM trees and Flash Translation Layer for Write-efficient KV Store[C]//2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). Piscataway, NJ: IEEE, 2018: 563-568.
[63]Im J, Bae J, Chung C, et al. Design of LSM-tree-based Key-Value SSDs with Bounded Tails[J]. ACM Transactions on Storage, 2021, 17(2): 1-27.
[64]Lee S, Lee C G, Min D, et al. Iterator Interface Extended LSM-tree-based KVSSD for Range Queries[C]//16th ACM International Conference on Systems and Storage. New York, NY: ACM, 2023: 60-70.
[65]Minje Lim, Jeeyoon Jung, Dongkun Shin. LSM-tree Compaction Acceleration Using In Storage Processing[C]//Proceedings of the 2021 IEEE International Conference on Consumer Electronics-Asia(ICCE-Asia'21). Piscataway, NJ: IEEE, 2021:1-3.
[66]Sun H, Liu W, Huang J, et al. Collaborative Compaction Optimization System using Near-Data Processing for LSM-tree-based Key-Value Stores[J]. Journal of Parallel and Distributed Computing, 2019, 131: 29-43.
[67]Sun H, Liu W, Huang J, et al. Near-Data Processing-Enabled and Time-Aware Compaction Optimization for LSM-tree-based Key-Value Stores[C]//Proceedings of the 48th International Conference on Parallel Processing. New York, NY: ACM, 2019: 1-11.
[68]Hui Sun, Qiang Wang, Yinliang Yue, et al. A Storage Computing Architecture with Multiple NDP Devices for Accelerating Compaction Performance in LSM-tree based KV Stores[J]. Journal of Systems Architecture(JSA), 2022, 130: 102681.
[69]Hui Sun, Bendong Lou, Chao Zhao, et al. Asynchronous Compaction Acceleration Scheme for Near-data Processing-enabled LSM-tree-based KV Stores[J]. ACM Transactions on Embedded Computing Systems. 2024, 23(6): 93:1-93:33.
[70]Sun H, Zhao C, Yue Y, et al. ProckStore: An NDP-empowered Key-Value Store with Asynchronous and Multi-threaded Compaction Scheme for Optimized Performance[J]. Journal of Systems Architecture, 2025, 160: 103342.
[71]Park I, Zheng Q, Manno D, et al. KV-CSD: A Hardware-Accelerated Key-Value Store for Data-Intensive Applications[C]//2023 IEEE International Conference on Cluster Computing (CLUSTER). Piscataway, NJ: IEEE, 2023, pp. 132-144.
[72]Duan Z, Feng H, Liu H, et al. AegonKV: A High Bandwidth, Low Tail Latency, and Low Storage Cost KV-Separated LSM Store with SmartSSD-based GC Offloading[C] //Proceedings of the 23rd USENIX Conference on File and Storage Technologies. Berkeley, CA: USENIX Association, 2025:321-335. |