[1] 梁其椿,许锡锴.智慧边海防的架构与推进策略[J].兵工自动化,2024,43(09):43-45.
LIANG Qichun, XU Xikai. Structure and promotion strategy of intelligent border and coastal defense[J]. Ordnance Industry Automation, 2024,43(09):43-45.
[2] ZHOU Zhi, CHEN Xu, LI En, et al. Edge intelligence: Paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019, 107(8): 1738-1762.
[3] HUANG Yanhong, LIU Wen, LIN Yijing, et al. FLCSDet: Federated Learning-Driven Cross-Spatial Vessel Detection for Maritime Surveillance With Privacy Preservation[J]. IEEE Transactions on Intelligent Transportation Systems, 2024.
[4] YANG Xin, YU Hao, GAO Xin, et al. Federated continual learning via knowledge fusion: A survey[J]. IEEE. Transactions on Knowledge and Data Engineering, 2024.
[5] LUOPAN Yaxin, HAN Rui, ZHANG Qinglong, et al. Fedknow: Federated continual learning with signature task knowledge integration at edge[C]. ICDE’23. 2023: 341-354.
[6] ZUO Xiaojiang, LUOPAN Yaxin, HAN Rui, et al. FedViT: Federated continual learning of vision transformer at edge[J]. Future Generation Computer Systems, 2024, 154: 1-15.
[7] HUANG Yixing, BERT C, FISCHER S, et al. Continual learning for peer-to-peer federated learning: A study on automated brain metastasis identification[J]. arXiv preprint arXiv:2204.13591, 2022.
[8] YAO Xin, SUN Lifeng. Continual local training for better initialization of federated models[C]. ICIP’2020. 2020: 1736-1740.
[9] Contributors M. MMCV: OpenMMLab Computer Vision Foundation[Z]. https://github.com/openmmlab/mmcv. 2018
[10] WOLF T, DEBUT L, SANH V, et al. Transformers: State-of-the-art natural language processing[C]. EMNLP’20. Online: Association for Computational Linguistics, 2020: 38-45.
[11] 李燕,张诗雅,李建玉,等.海防部队数据系统建设研究[J].火力与指挥控制,2024,49(07):184-193.
LI Yan, ZHANG Shiya, LI Jianyu, et al. Study on data system construction of coastal defense force[J]. Fire Control & Command Control, 2024,49(07):184-193.
[12] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. AIR’2017. 2017: 1273-1282.
[13] SHELLER M J, REINA G A, EDWARDS B, et al. Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation[C]. MICCAI’18. 2019: 92-104.
[14] LIAO Yunming, XU Yang, XU Hongli, et al. Adaptive configuration for heterogeneous participants in decentralized federated learning[C]. INFOCOM’23. 2023: 1-10.
[15] MA Zhenguo, XU Yang, XU Hongli, et al. Like attracts like: Personalized federated learning in decentralized edge computing[J]. IEEE Transactions on Mobile Computing, 2022, 23(2): 1080-1096.
[16] SHOHAM N, AVIDOR T, KEREN A, et al. Overcoming forgetting in federated learning on non-iid data[J]. arXiv preprint arXiv:1910.07796, 2019.
[17] YAO Xin, SUN Lifeng. Continual local training for better initialization of federated models[C]. ICIP’2020. 2020: 1736-1740.
[18] ZHU Zhuangdi, HONG Junyuan, ZHOU Jiayu. Data-free knowledge distillation for heterogeneous federated learning[C]. International conference on machine learning. 2021: 12878-12889.
[19] ZHANG Zhouyangzi, GUO Bin, SUN Wen, et al. Cross-fcl: Toward a cross-edge federated continual learning framework in mobile edge computing systems[J]. IEEE Transactions on Mobile Computing, 2022, 23(1): 313-326.
[20] WANG Qiang, LIU Bingyan, LI Yawen. Traceable federated continual learning[C]. CVPR’24. 2024: 12872-12881.
[21] WEI Guoyizhe, LI xin. Knowledge lock: Overcoming catastrophic forgetting in federated learning[C]. Pacific Asia Conference on Knowledge Discovery and Data Mining. 2022: 601-612.
[22] LIU Quande, CHEN Cheng, QIN Jing, et al. Feddg: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 1013-1023.
[23] RISSANEN J J. Fisher information and stochastic complexity[J]. IEEE Transactions on Information Theory, 1996, 42(1): 40-47.
[24] YU Sixing, QIAN Wei, JANNESARI A. Resource-aware federated learning using knowledge extraction and multi-model fusion[J]. arXiv preprint arXiv:2208.07978, 2022.
[25] LI Daliang, WANG Junpu. Fedmd: Heterogenous federated learning via model distillation[J]. arXiv preprint arXiv:1910.03581, 2019.
[26] ZHU Zhuangdi, HONG Junyuan, ZHOU Jiayu. Data-free knowledge distillation for heterogeneous federated learning[C]. International conference on machine learning. 2021: 12878-12889.
[27] ONOSZKO N, KARLSSON G, MOGREN O, et al. Decentralized federated learning of deep neural networks on non-iid data[J]. arXiv preprint arXiv:2107.08517, 2021.
[28] ZHANG Jie, CHEN Li, CHEN Xiaohui, et al. A Novel Hierarchically Decentralized Federated Learning Framework in 6G Wireless Networks[C]. INFOCOM’23. 2023: 1-6.
[29] CHEN Suo, XU Yang, XU Hongli, et al. Decentralized federated learning with intermediate results in mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2022, 23(1): 341-358.
|