Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering

   

Task-grained Federated Continual Learning Method for Maritime Defense Data

  

  • Published:2026-01-23

面向海防数据的任务粒度联邦持续学习方法

Abstract: With the rapid informatization of the maritime defense, federated learning becomes crucial for secure distributed data sharing. However, maritime defense sites face two challenges: 1) significant discrepancies in local data and tasks leading to negative knowledge transfer, and 2) difficulties in sharing knowledge due to limited communication bandwidth (remote locations of maritime defense sites) when continuously updating local model. Existing federated continual learning (FCL) methods primarily focus on extracting and aggregating the latest local model, yet lack in-depth research at the task level. This paper proposes FedTask, a task-grained FCL method, designed to adapt to multimodal maritime defense data (images, text, tabular data) while supporting task-level knowledge extraction, compact weight compression for narrow bandwidth. Through identification of similar task pairs among multiple clients (coastal defense sites), FedTask also enables positive knowledge transfer in both centralized and decentralized scenarios. Meanwhile, a unified architecture for federated continual learning is established. The system provides an integrated data processing pipeline and a scalable algorithm container, supporting low-code collaborative training across distributed nodes. Evaluations on real maritime defense datasets demonstrate that, compared to state-of-the-art 9 FCL methods, FedTask improves accuracy by 23% and 5% in centralized and decentralized scenarios, and reduces communication overhead by 75% and 85% under equivalent training time. The code is available at: https://github.com/LINC-BIT/FCLOnMDefenseData.

摘要: 随着海防部队信息化加速,联邦学习成为分布式数据安全共享的重要手段。然而,海防站点(如前线/后勤部队、设备中心)面临任务差异大导致知识负迁移,和本地模型持续更新但受限于通信带宽(边海防地处偏远)难以共享知识两大难题。现有联邦持续学习方法主要聚焦模型参数与数据特征,缺乏对任务层面的持续学习研究。本文提出任务粒度联邦持续学习方法FedTask,适配图像、文本、表格等多模态海防数据,支持任务粒度的模型知识提取,面向通信窄带宽的限制实现紧凑权重压缩。在中心化/去中心化场景下,通过对相似任务对的识别和聚合,FedTask实现了分布式客户端(海防站点)之间的知识正迁移。同时,本文构建了联邦持续学习系统架构,该系统提供了一体化的数据处理流程和可扩展的算法容器,并支持分布式节点的低代码化协同训练。基于真实的海防数据,本文对比了最新的9种联邦持续方法,测试结果表明,在同等训练时间下,FedTask分别提升中心化和去中心化联邦学习任务平均准确率14.78%和9.78%,并减少75%和85%的通信时间。