[1] United Nations Conference on Trade and Development(UNCTAD).Review of Maritime Transport 2024: Navigating Maritime Chokepoints [R]. United Nations Conference on Trade and Development, Geneva, Switzerland, 2024:139-148.
[2] 张弛.“桑吉”轮失事中国大救援![J].中国水运,2018,(03):12-15.
Zhang C. Sanchi Ship Accident and China’s Major Rescue Effort![J]. China Water Transport, 2018, (03):12-15.
[3] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. nature, 2015, 521(7553): 436-444.
[4] Gao D, Zhu Y, Zhang J, et al. A novel MP-LSTM method for ship trajectory prediction based on AIS data[J]. Ocean Engineering, 2021, 228: 108956.
[5] Ding M, Su W, Liu Y, et al. A Novel Approach on Vessel Trajectory Prediction Based on Variational LSTM[C]//2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, 2020: 206-211.
[6] Zhang S, Wang L, Zhu M, et al. A Bi-directional LSTM Ship Trajectory Prediction Method based on Attention Mechanism[C]//2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2021: 1987-1993.
[7] Mehri S, Alesheikh A A, Basiri A. A Contextual Hybrid Model for Vessel Movement Prediction[J]. IEEE Access, 2021, 9: 45600-45613.
[8] Lin Z, Yue W, Huang J, et al. Ship Trajectory Prediction Based on the TTCN-Attention-GRU Model[J]. Electronics, 2023, 12(12): 2556.
[9] Wang C, Ren H, Li H. Vessel trajectory prediction based on AIS data and bidirectional GRU[C]//2020 International conference on computer vision, image and deep learning (CVIDL). IEEE, 2020: 260-264.
[10] You L, Xiao S, Peng Q, et al. ST-Seq2Seq: A Spatio-Temporal Feature-Optimized Seq2Seq Model for Short-Term Vessel Trajectory Prediction[J]. IEEE Access, 2020, 8: 218565-218574.
[11] Li H, Xing W, Jiao H, et al. Deep bi-directional information-empowered ship trajectory prediction for maritime autonomous surface ships[J]. Transportation Research Part E: Logistics and Transportation Review, 2024, 181: 103367.
[12] Nguyen D, Fablet R. A Transformer Network With Sparse Augmented Data Representation and Cross Entropy Loss for AIS-Based Vessel Trajectory Prediction[J]. IEEE Access, 2024, 12: 21596-21609.
[13] Jiang D, Shi G, Li N, et al. TRFM-LS: Transformer-Based Deep Learning Method for Vessel Trajectory Prediction[J]. Journal of Marine Science and Engineering, 2023, 11(4): 880.
[14] Zhou H, Zhang S, Peng J, et al. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting[C]//Proceedings of the AAAI conference on artificial intelligence. 2021, 35(12): 11106-11115.
[15] Zeng A, Chen M, Zhang L, et al. Are Transformers Effective for Time Series Forecasting?[C]//Proceedings of the AAAI conference on artificial intelligence. 2023, 37(9): 11121-11128.
[16] Wu H, Hu T, Liu Y, et al. TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis[C]//The Eleventh International Conference on Learning Representations:19-25.
[17] Liu Y, Hu T, Zhang H, et al. iTransformer: Inverted Transformers Are Effective for Time Series Forecasting[C]//The Twelfth International Conference on Learning Representations:122-124.
[18] Zhao L, Zuo Y, Li T, et al. Application of an Encoder–Decoder Model with Attention Mechanism for Trajectory Prediction Based on AIS Data: Case Studies from the yangtze River of China and the Eastern Coast of the U.S[J]. Journal of Marine Science and Engineering, 2023, 11(8): 1530.
[19] Murray B, Perera L P. An AIS-based deep learning framework for regional ship behavior prediction[J]. Reliability Engineering & System Safety, 2021, 215: 107819.
[20] 陈锦.基于机器学习的船舶航迹分析方法研究[D].湖南大学,2023:14.
CHEN J. Research on Vessel Trajectory Analysis Method Based on Machine Learning[D]. Hunan University, 2023:14.
[21] Liang Y, Xia Y, Ke S, et al. Airformer: Predicting Nationwide Air Quality in China with Transformers[C]//Proceedings of the AAAI conference on artificial intelligence. 2023, 37(12): 14329-14337.
[22] Lan S, Ma Y, Huang W, et al. DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting[C]//International conference on machine learning. PMLR, 2022: 11906-11917.
[23] van den Oord A, Dieleman S, Zen H, et al. WaveNet: A Generative Model for Raw Audio[C]//Proc. SSW 2016. 2016: 125-125..
[24]Dauphin Y N, Fan A, Auli M, et al. Language Modeling with Gated Convolutional Networks[C]//International conference on machine learning. PMLR, 2017: 933-941.
[25] Arevalo J, Solorio T, Montes-y-Gómez M, et al. GATED MULTIMODAL UNITS FOR INFORMATION FUSION[J]. arXiv preprint arXiv:1702.01992, 2017.
|