[1]Hong Tao, Pinson P, Wang Yi, et al. Energy forecasting: A review and outlook[J]. IEEE Open Access Journal of Power and Energy, 2020, 7: 376-388.
[2]Perez R, Kivalov S, Schlemmer J, et al. Validation of short and medium term operational solar radiation forecasts in the US[J]. Solar Energy, 2010, 84(12): 2161-2172.
[3]Lorenz E, Scheidsteger T, Hurka J, et al. Regional PV power prediction for improved grid integration[J]. Progress in Photovoltaics: Research and Applications, 2011, 19(7): 757-771.
[4]丁明,徐宁舟.基于马尔可夫链的光伏发电系统输出功率短期预测方法[J].电网技术,2011,35(01):152-157
Ding Ming, Xu Ning Zhou. A method to forecast short term output power of photovoltaic generation system based on Markov chain[J] Power system technology,2011, 35(1): 152157
[5]曹俊波,周任军,邓学华,等.考虑优化ARIMA模型差分次数 的风功率预测[J].电力系统及其自动化学报,2019,31(1) : 105-111.
Chen Zhong, Zong Pengpeng. Photovoltaic output prediction based on grey correlation analysis of sample expansion[J].Journal of Solar Energy,2017,38(11):2909-2915.
[6]Kasten F, Young A T. Revised optical air mass tables and approximation formula[J]. Applied optics, 1989, 28(22): 4735-4738.
[7]Ji W, Chee K C. Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN[J]. Solar energy, 2011, 85(5): 808-817.
[8]Reikard G. Predicting solar radiation at high resolutions: A comparison of time series forecasts[J]. Solar energy, 2009, 83(3): 342-349.
[9]曹俊波,周任军,邓学华,等.考虑优化ARIMA模型差分次数 的风功率预测[J].电力系统及其自动化学报,2019,31(1) : 105-111.
Cao Junbo, Zhou Renjun, Deng Xuehua, et al. Wind power prediction considering the optimization of the number of differences in ARIMA model[J].Journal of Electric Power System and Automatics,2019,31(1) : 105-111.
[10]Zhang Wanqing, Lin Zi, Liu Xxiaolei. Short-term offshore wind power forecasting-A hybrid model based on Discrete Wavelet Transform (DWT),Seasonal Autoregressive Integrated Moving Average (SARIMA), and deep-learning-based Long Short-Term Memory (LSTM)[J]. Renewable Energy, 2022, 185: 611-628.
[11]张惠娟,刘琪,岑泽尧,等.基于GWO-MLP的光伏系统输出功率 短期预测模型[J].电测与仪表,2022,59(7):72-77,113.
Zhang Huijuan,Liu Qi,Cen Zeyao,et al. Short-term prediction model of output power of photovoltaic system based on GWO-MLP [J]. Electrical Measurement & Instrumentation,2022,59(7):72-77,113.
[12]黄杨珏,张晓珂,沈开程,等.基于智能混合预测策略的短期光伏 功率预测[J].电网与清洁能源,2023,39(11):111-119.
Huang Yangjue,Zhang Xiaoke,Shen Kaicheng,et al. Short term photovoltaic power forecasting based on intelligent hybrid forecasting strategy[J]. Power System and Clean Energy,2023,39 (11):111-119.
[13]闫秀英,樊晟志.基于RW-SSA-GRNN的短期电力负荷预测[J]. 分布式能源,2022,7(6):37-43.
Yan Xiuying,Fan Shengzhi. Short-term power load forecasting based on RW-SSA-GRNN[J]. Distributed Energy,2022,7(6):37 43.
[14]Ding Ming, Wang Lei, Bi Rui. An ANN-based approach for forecasting the power output of photovoltaic system[J]. Procedia Environmental Sciences, 2011, 11: 1308-1315.
[15]Mori H, Takahashi M. Development of GRBFN with global structure for PV generation output forecasting[C]//2012 IEEE Power and Energy Society General Meeting. IEEE, 2012: 1-7.
[16]Kermia M H, Abbes D, Bosche J. Photovoltaic power prediction using a recurrent neural network RNN[C]//2020 6th IEEE International Energy Conference (ENERGYCon). IEEE, 2020: 545-549.
[17]Hossain M S, Mahmood H. Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast[J]. Ieee Access, 2020, 8: 172524-172533.
[18]Law E W, Prasad A A, Kay M, et al. Direct normal irradiance forecasting and its application to concentrated solar thermal output forecasting–A review[J]. Solar Energy, 2014, 108: 287-307.
[19]Benmouiza K, Cheknane A. Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models[J]. Theoretical and Applied Climatology, 2016, 124: 945-958.
[20]Wang Xuguang, Su Jie, Zhang Lifeng. Time-delay estimation for SISO systems using SWσ[J]. ISA transactions, 2018, 80: 43-53.
[21]Wang,Xuguang, Zuo Jifeng, Lifeng Zhang, et al. System modeling oriented time-delay estimation[J].ISA transactions 2020, 98: 149-160.
[22]Wang,Xuguang, Zhang Ke, Su Jie. Time-Delay Estimation Based on Graph Global Smoothness[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-12.
[23]李红,曹添植,韩少峰,等.基于有权无向图同构的电气图元件识别方法研究[J].电力与能源,2025,46(01):27-32.
Li Hong, Cao Tianzhi, Han Shaofeng, et al. Research on component identification method of electrical diagram based on weighted undirected graph isomorphism[J].Electric Power& Energy,2025,46(01):27-32.
[24]Wang Yuxuan, Wu Haixu, Dong Jiaxiang, et al. Deep time series models: A comprehensive survey and benchmark[J]. arXiv preprint arXiv:2407.13278, 2024.
[25]Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306.
[26]Dey R, Salem F M. Gate-variants of gated recurrent unit (GRU) neural networks[C]//2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). IEEE, 2017: 1597-1600.
[27]Ramraj S, Uzir N, Sunil R, et al. Experimenting XGBoost algorithm for prediction and classification of different datasets[J]. International Journal of Control Theory and Applications, 2016, 9(40): 651-662.
|