[1] SALAM G P. Towards jetography[J]. The European Physical Journal C, 2010, 67: 637-686.
[2] GALLICCHIO J, HUTH J, KAGAN M, et al. Multivariate discrimination and the Higgs+ W/Z search[J]. Journal of High Energy Physics, 2011, 2011(4): 1-41.
[3] CHATRCHYAN S, KHACHATRYAN V, SIRUNYAN A M, et al. Search for supersymmetry in events with opposite-sign dileptons and missing transverse energy using an artificial neural network[J]. Physical Review D—Particles, Fields, Gravitation, and Cosmology, 2013, 87(7): 072001.
[4] BALDI P, SADOWSKi P, WHITESON D. Enhanced higgs boson to τ+ τ-search with deep learning[J]. Physical review letters, 2015, 114(11): 111801.
[5] LARKOSKI A J, MOULT I, NACHMAN B. Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning[J]. Physics Reports, 2020, 841: 1-63.
[6] 张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482.
ZHANG S, GONG Y H, WANG J J. The development of deep convolution neural network and its applications on computer vision[J]. Chinese Journal of Computers, 2019, 42(3): 453-482.(in Chinese)
[7] 王芝辉, 王晓东. 基于神经网络的文本分类方法研究[J]. 计算机工程, 2020, 46(3): 11-17.
WANG Z H, WANG X D. Research on Text Classification Methods Based on Neural Network[J]. Computer Engineering, 2020, 46(3): 11-17.(in Chinese)
[8] 高庆吉, 李天昊, 邢志伟, 刘佩佩. 基于区块特征融合的点云语义分割方法[J]. 计算机工程, 2022, 48(9): 37-44,54.
GAO Q J, LI T H, XING Z W, LIU P P. Point Cloud Semantic Segmentation Method Based on Block Feature Fusion[J]. Computer Engineering, 2022, 48(9): 37-44,54.(in Chinese)
[9] GRIPAIOS B, HADDADIN W, LESTER C G. Lorentz-and permutation-invariants of particles[J]. Journal of Physics A: Mathematical and Theoretical, 2021, 54(15): 155201.
[10] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-1901.
[11] DEVLIN J , CHANG M W , LEE K ,et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[EB/OL]. [2025-05-31]. https://arxiv.org/abs/1810.04805.
[12] CIESIELSKI R, GOULIANOS K. MBR Monte Carlo simulation in PYTHIA8[EB/OL]. [2025-05-31]. https://arxiv.org/abs/1205.1446.
[13] DE F J, DELAERE C, DEMIN P, et al. DELPHES 3: a modular framework for fast simulation of a generic collider experiment[J]. Journal of High Energy Physics, 2014, 2014(2): 1-26.
[14] ALWALL J, FREDERIX R, FRIXIONE S, et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations[J]. Journal of High Energy Physics, 2014, 2014(7): 1-157.
[15] KASIECZKA G, PLEHN T, BUTTER A, et al. The machine learning landscape of top taggers[J]. SciPost Physics, 2019, 7(1): 014.
[16] KOMISKE P T, METODIEV E M, THALER J. Energy flow networks: deep sets for particle jets[J]. Journal of High Energy Physics, 2019, 2019(1): 1-46.
[17] QU H, LI C, QIAN S. Particle transformer for jet tagging[C]//International Conference on Machine Learning, PMLR. Baltimore, Maryland, USA: ACM Press, 2022: 18281-18292.
[18] KOMISKE P T, MASTANDREA R, METODIEV E M, et al. Exploring the space of jets with CMS open data[J]. Physical Review D, 2020, 101(3): 034009.
[19] ATLAS collaboration (2022). ATLAS Top Tagging Open Data Set[EB/OL]. [2025-05-31]. ATLAS Top Tagging Open Data Set | CERN Open Data Portal.
[20] KANSAL R, DUARTE J, SU H, et al. Particle cloud generation with message passing generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2021, 34: 23858-23871.
[21] ANDREASSEN A, KOMISKE P T, METODIEV E M, et al. OmniFold: a method to simultaneously unfold all observables[J]. Physical review letters, 2020, 124(18): 182001.
[22] KASIECZKA G, NACHMAN B, SHIH D, et al. The LHC Olympics 2020 a community challenge for anomaly detection in high energy physics[J]. Reports on progress in physics, 2021, 84(12): 124201.
[23] DE O L, KAGAN M, MACKEY L, et al. Jet-images—deep learning edition[J]. Journal of High Energy Physics, 2016, 2016(7): 1-32.
[24] KOMISKE P T, METODIEV E M, SCHWARTZ M D. Deep learning in color: towards automated quark/gluon jet discrimination[J]. Journal of High Energy Physics, 2017, 2017(1): 1-23.
[25] KASIECZKA G, PLEHN T, RUSSELL M, et al. Deep-learning top taggers or the end of QCD?[J]. Journal of High Energy Physics, 2017, 2017(5): 1-22.
[26] GUEST D, COLLADO J, BALDI P, et al. Jet flavor classification in high-energy physics with deep neural networks[J]. Physical Review D, 2016, 94(11): 112002.
[27] BOLS E, KIESELER J, VERZETTI M, et al. Jet flavour classification using DeepJet[J]. Journal of Instrumentation, 2020, 15(12): P12012.
[28] LOUPPE G, CHO K, BECOT C, et al. QCD-aware recursive neural networks for jet physics[J]. Journal of High Energy Physics, 2019, 2019(1): 1-23.
[29] ZAHEER M, KOTTUR S, RAVANBAKHSH S, et al. Deep sets[C]//Advances in neural information processing systems(NIPS). Long Beach, California, USA: Curran Associates Inc Press, 2017: 3394-3404
[30] QU H, GOUSKOS L. Jet tagging via particle clouds[J]. Physical Review D, 2020, 101(5): 056019.
[31] WANG Y, SUN Y, LIU Z, et al. Dynamic graph cnn for learning on point clouds[J]. ACM Transactions on Graphics (tog), 2019, 38(5): 1-12.
[32] WU Y, WANG K, LI C, et al. Jet tagging with more-interaction particle transformer[J]. Chinese Physics C, 2025, 49(1): 013110.
[33] SIRUNYAN A M, TUMASYAN A, ADAM W, et al. Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques[J]. Journal of Instrumentation, 2020, 15(06): P06005-P06005.
[34] TUMASYA A, ADAM W, ANDREJKOVIC J W, et al. Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at√ s= 13 TeV[J]. Physical review letters, 2023, 131(6).
[35] BOGATSKIY A, ANDERSON B, OFFERMANN J, et al. Lorentz group equivariant neural network for particle physics[C]// International Conference on Machine Learning, PMLR. Browse Proceedings: JMLR.org Press, 2020: 992-1002.
[36] GONG S, MENG Q, ZHANG J, et al. An efficient Lorentz equivariant graph neural network for jet tagging[J]. Journal of High Energy Physics, 2022, 2022(7): 1-22.
[37] BOGATSKIY A, HOFFMAN T, MILLER D W, et al. Explainable equivariant neural networks for particle physics: PELICAN[J]. Journal of High Energy Physics, 2024, 2024(3): 1-66.
[38] RUHE D, BRANDSTETTER J, FORRÉ P. Clifford group equivariant neural networks[C]//Advances in neural information processing systems(NIPS). New Orleans, LA, USA: Curran Associates Inc Press, 2023: 62922-62990.
[39] SPINNER J, BRESÓ V, DE H P, et al. Lorentz-equivariant geometric algebra transformers for high-energy physics[J]. Advances in neural information processing systems, 2024, 37: 22178-22205.
[40] BREHMER J, DE H P, BEHRENDS S, et al. Geometric algebra transformer[J]. Advances in Neural Information Processing Systems, 2023, 36: 35472-35496.
[41] BIRK J, HALLIN A, KASIECZKA G. OmniJet-α: the first cross-task foundation model for particle physics[J]. Machine Learning: Science and Technology, 2024, 5(3): 035031.
[42] VAN D O A, VINYALS O. Neural discrete representation learning[C]//Advances in neural information processing systems(NIPS). Long Beach, California, USA: Curran Associates Inc Press, 2017: 6309-6318.
[43] GOLLING T, HEINRICH L, KAGAN M, et al. Masked particle modeling on sets: towards self-supervised high energy physics foundation models[J]. Machine Learning: Science and Technology, 2024, 5(3): 035074.
[44] MIKUNI V, NACHMAN B. Method to simultaneously facilitate all jet physics tasks[J]. Physical Review D, 2025, 111(5): 054015.
[45] WU H, CHI P, ZHU Y, et al. Scaling Particle Collision Data Analysis[EB/OL]. [2025-08-27]. https://arxiv.org/abs/2412.00129.
[46] BAALOUCH M , DEFURNE M , POLI J P ,et al. Sim-to-Real Domain Adaptation For High Energy Physics[EB/OL]. [2025-10-8]. https://arxiv.org/abs/1912.08001.
[47] AMRAM O, ANZALONE L, BIRK J, et al. Aspen open jets: unlocking LHC data for foundation models in particle physics[J]. Machine Learning: Science and Technology, 2025, 6(3): 030601
[48] ESMAIL W, HAMMAD A, NOJIRI M. IAFormer: Interaction-Aware Transformer network for collider data analysis[EB/OL]. [2025-10-8]. https://arxiv.org/abs/2505.03258.
[49] MURNANE D. Graph structure from point clouds: Geometric attention is all you need[EB/OL]. [2025-10-8]. https://arxiv.org/abs/2307.16662.
[50] FAVARO L, GERHARTZ G, HAMPRECHT F A, et al. Lorentz-Equivariance without Limitations[EB/OL]. [2025-10-8]. https://arxiv.org/abs/2508.14898.
[51] ODAGIU P, QUE Z, DUARTE J, et al. Ultrafast jet classification at the HL-LHC[J]. Machine Learning: Science and Technology, 2024, 5(3): 035017.
[52] LIU R, GANDRAKOTA A, NGADIUBA J, et al. Efficient and Robust Jet Tagging at the LHC with Knowledge Distillation[EB/OL]. [2025-10-8]. https://arxiv.org/abs/2311.14160.
|