[1] WEN L, JO K. Deep learning-based perception systems for autonomous driving: A comprehensive survey[J]. Neurocomputing, 2022, 489: 255-270. DOI:10.1016/j.neucom.2021.08.155.
[2] 王宏志, 宋明轩, 程超, 等. 基于改进YOLOv5算法的道路目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2658-2667. DOI:10.13229/j.cnki.jdxbgxb.20221461.
WANG H Z, SONG M X, CHENG C, et al. Road object detection method based on improved YOLOv5 algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(9): 2658-2667. DOI:10.13229/j.cnki.jdxbgxb.20221461.
[3] HU Y, SUN L, LI B, et al. End-to-end autonomous driving: Challenges and frontiers[J]. IEEE Transactions on Intelligent Vehicles, 2023, 9(3): 2250-2265. DOI:10.1109/TIV.2023.3251704.
[4] MITTAL P. A comprehensive survey of deep learning-based lightweight object detection models for edge devices[J]. Artificial Intelligence Review, 2024, 57(9): 242-242. DOI:10.1007/s10462-024-10877-1.
[5] CHEN R C, DEWI C, ZHUANG Y C, et al. Contrast limited adaptive histogram equalization for recognizing road marking at night based on YOLO models[J]. IEEE Access, 2023, 11: 92926-92942. DOI:10.1109/ACCESS.2023.3309410.
[6] AGRAWAL P, GIRSHICK R, MALIK J. Analyzing the performance of multilayer neural networks for object recognition[C]//European Conference on Computer Vision (ECCV). California, USA: Springer, 2014: 329-344.
[7] ARORA N, KUMAR Y, KARKRA R, et al. Automatic vehicle detection system in different environment conditions using fast R-CNN[J]. Multimedia Tools and Applications, 2022, 81(13): 18715-18735. DOI:10.1007/s11042-022-12347-8.
[8] LI X M, XIE Z J, DENG X, et al. Traffic sign detection based on improved faster R-CNN for autonomous driving[J]. Journal of Supercomputing, 2022, 78(6): 7982-8002. DOI:10.1007/s11227-021-04230-4.
[9] GAWANDE U, HAJARI K, GOLHAR Y. SIRA: Scale illumination rotation affine invariant mask R-CNN for pedestrian detection[J]. Applied Intelligence, 2022, 52(9): 10398-10416. DOI:10.1007/s10489-021-03073-z.
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 779-788. DOI:10.1109/CVPR.2016.91.
[11] LIU W, ANGELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]//Computer Vision - ECCV. Cham, Switzerland: Springer, 2016: 21-37.
[12] XIA W J, LI P Q, HUANG H Y, et al. TTD-YOLO: A real-time traffic target detection algorithm based on YOLOv5[J]. IEEE Access, 2024, 12: 66419-66431. DOI:10.1109/ACCESS.2024.3394697.
[13] LUO S, YU J, XI Y J, et al. Aircraft target detection in remote sensing images based on improved YOLOv5[J]. IEEE Access, 2022, 10: 5184-5192. DOI:10.1109/ACCESS.2022.3141899.
[14] CHEN H, CHEN Z, YU H. Enhanced YOLOv5: An efficient road object detection method[J]. Sensors, 2023, 23(20): 8355. DOI:10.3390/s23208355.
[15] WANG W J, YU W. Enhancing real-time road object detection: The RD-YOLO algorithm with higher precision and efficiency[J]. IEEE Access, 2024, 12: 190876-190888. DOI:10.1109/ACCESS.2024.3518208.
[16] 王磊, 胡君红, 任洋. 基于大内核自适应融合的小目标检测算法[J]. 计算机工程, 2025, 51(6): 65-73. DOI:10.19678/j.issn.1000-3428.0068540.
WANG L, HU J H, REN Y. Small object detection algorithm based on large kernel adaptive fusion[J]. Computer Engineering, 2025, 51(6): 65-73. DOI:10.19678/j.issn.1000-3428.0068540.
[17] 华夏, 王新晴, 王东, 等. 基于改进SSD的交通大场景多目标检测[J]. 光学学报, 2018, 38(12): 213-223. DOI:10.3788/AOS201838.1215003.
HUA X, WANG X Q, WANG D, et al. Multi-objective detection of traffic scenes based on improved SSD[J]. Acta Optica Sinica, 2018, 38(12): 213-223. DOI:10.3788/AOS201838.1215003.
[18] 霍爱清, 张书涵, 杨玉艳, 等. 密集交通场景中改进YOLOv3目标检测优化算法[J]. 计算机工程与科学, 2023, 45(5): 878-884. DOI:10.3969/j.issn.1007-130X.2023.05.013.
HUO A Q, ZHANG S H, YANG Y Y, et al. An improved YOLOv3 target detection optimization algorithm in dense traffic scenarios[J]. Computer Engineering and Science, 2023, 45(5): 878-884. DOI:10.3969/j.issn.1007-130X.2023.05.013.
[19] 陈海秀, 陈子昂, 房威志, 等. 复杂场景下的改进YOLOv8-n密集行人检测模型[J/OL]. 计算机工程. (2025)[2025-06-16].https://doi.org/10.19678/j.issn.1000-3428.0070531.
CHEN H X, CHEN Z A, FANG W Z, et al. An improved dense pedestrian detection algorithm based on YOLOv8-n in complex scenes[J/OL]. Computer Engineering. (2025)[2025-06-16].https://doi.org/10.19678/j.issn.1000-3428.0070531.
[20] LI F, ZHAO Y, WEI J, et al. SNCE-YOLO: An improved target detection algorithm in complex road scenes[J]. IEEE Access, 2024, 12: 152138-152151. DOI:10.1109/ACCESS.2024.3481642.
[21] 高德勇, 陈泰达, 缪兰. 改进YOLOv8n的道路目标检测算法[J]. 计算机工程与应用, 2024, 60(16): 186-197. DOI:10.3778/j.issn.1002-8331.2403-0383.
GAO D Y, CHEN T D, MIAO L. Improved road object detection algorithm for YOLOv8n[J]. Computer Engineering and Applications, 2024, 60(16): 186-197. DOI:10.3778/j.issn.1002-8331.2403-0383.
[22] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: Rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: 121352. DOI:10.1016/j.eswa.2023.121352.
[23] XIA Z F, PAN X R, SONG S J, et al. Vision transformer with deformable attention[EB/OL]. arXiv, 2022. (2022-01-03)[2025-06-16]. https://doi.org/10.48550/arXiv.2201.00520.
[24] GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752. DOI:10.1007/s41095-023-0364-2.
[25] ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3-11. DOI:10.1016/j.neunet.2017.12.012.
[26] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//31st IEEE/CVF Conference on Computer Visionand Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 8759-8768. DOI:10.1109/CVPR.2018.00913.
[27] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 936-944. DOI:10.1109/CVPR.2017.106.
[28] HAN J H, LIANG X W, XU H, et al. SODA10M: A large-scale 2D self/semi-supervised object detection dataset for autonomous driving[EB/OL]. arXiv, 2021. (2021-06-17)[2025-06-16]. https://doi.org/10.48550/arXiv.2106.11118.
[29] YU F, CHEN H F, WANG X, et al. BDD100K: A diverse driving dataset for heterogeneous multitask learning[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE/CVF, 2020: 2633-2642.
[30] 殷智伟, 邵家玉, 张宁, 等. YOLO-DAW: 基于窗口内部双重注意力机制的目标检测模型[J]. 东南大学学报(自然科学版), 2023, 53(4): 718-724. DOI:10.3969/j.issn.1001-0505.2023.04.018.
YIN Z W, SHAO J Y, ZHANG N, et al. YOLO-DAW: Object detection model based on dual attention mechanism within windows[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(4): 718-724. DOI:10.3969/j.issn.1001-0505.2023.04.018.
[31] ZHAO L, FU L L, JIA X, et al. YOLO-BOS: An emerging approach for vehicle detection with a novel BRSA mechanism[J]. Sensors, 2024, 24(24): 8126. DOI:10.3390/s24248126.
[32] MAO G T, LIANG H B, YAO Y T, et al. ESPPNet: An efficient progressive spatial pyramid pooling network for real-time traffic object detection[J]. IEEE Transactions on Automation Science and Engineering, 2025, 22: 14048-14061. DOI:10.1109/TASE.2025.3558929.
[33] LYU C Q, ZHANG W W, HUANG H A, et al. RTMDet: An empirical study of designing real-time object detectors[EB/OL]. arXiv, 2022. (2022-12-15)[2025-06-16]. https://doi.org/10.48550/arXiv.2212.07784.
|